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Abstract

been obtained so far.

Background: The primary visual cortex of many mammals contains a continuous representation of visual space,
with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that
orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely
separated in eutherian evolution. Here, we examine whether one of the most prominent models for the
optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and map continuity. While this model
has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have

Results: We present a mathematical approach to analytically calculate the cortical representations predicted by the
EN model for the joint mapping of stimulus position and orientation. We find that in all the previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space
identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an
extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these
layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise.

Conclusions: Our results demonstrate that optimization models for stimulus representations dominated by
nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They
question that visual cortical feature representations can be explained by a coverage-continuity-compromise.

Introduction

The pattern of orientation columns in the primary visual
cortex (V1) of carnivores, primates, and their close rela-
tives are among the most intensely studied structures in
the cerebral cortex and a large body of experimental (e.
g., [1-13]) and theoretical work (e.g., [14-39]) has been
dedicated to uncovering its organization principles and
the circuit level mechanisms that underlie its develop-
ment and operation. Orientation preference maps
(OPMs) exhibit a roughly repetitive arrangement of pre-
ferred orientations in which adjacent columns preferring
the same orientation are separated by a typical distance
in the millimeter range [2-5,10]. This range seems to be
set by cortical mechanisms both intrinsic to a particular
area [40] but potentially also involving interactions
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between different cortical regions [41]. The pattern of
orientation columns is however not strictly periodic
because the precise local arrangement of preferred
orientation never exactly repeats. Instead, OPMs appear
as organized by a spatially complex aperiodic array of
pinwheel centers, around which columns activated by
different stimulus orientations are radially arranged like
the spokes of a wheel [2-5,10]. The arrangement of
these pinwheel centers, although spatially irregular, is
statistically distinct from a pattern of randomly posi-
tioned points [38] as well as from patterns of phase sin-
gularities in a random pattern of preferred orientations
[32,36,38,42] with spatial correlations identical to experi-
mental observations [38,42]. This suggests that the lay-
out of orientation columns and pinwheels although
spatially aperiodic follows a definite system of layout
rules. Cortical columns can in principle exhibit almost
perfectly repetitive order as exemplified by ocular domi-
nance (OD) bands in the macaque monkey primary
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visual cortex [43,44]. It is thus a fundamental question
for understanding visual cortical architecture, whether
there are layout principles that prohibit a spatially
exactly periodic organization of orientation columns and
instead enforce complex arrangements of these columns.

Recent comparative data have raised the urgency of
answering this question and of dissecting what is consti-
tutive of such complex layout principles. Kaschube et al.
[38] quantitatively compared pinwheel arrangements in
a large dataset from three species widely separated in
the evolution of eutherian mammals. These authors
found that the spatial statistics of pinwheels are surpris-
ingly invariant. In particular, the overall pinwheel den-
sity and the variability of pinwheel densities in regions
from the scale of a single hypercolumn to substantial
fractions of the entire primary visual cortex were found
to be virtually identical. Characterizing pinwheel layout
on the scale of individual hypercolumns, they found the
distributions of nearest-neighbor pinwheel distances to
be almost indistinguishable. Further supporting common
layout rules for orientation columns in carnivores and
primates, the spatial configuration of the superficial
patch system [45] and the responses to drifting grating
stimuli were recently found to be very similar in cat and
macaque monkey primary visual cortex [46].

From an evolutionary perspective, the occurrence of
quantitatively similar layouts for OPMs in primate tree
shrews and carnivorous species appears highly informa-
tive. The evolutionary lineages of these taxa diverged
more than 65 million years ago during the basal radia-
tion of eutherian mammals [47-49]. According to the
fossil record and cladistic reconstructions, their last
common ancestors (called the boreo-eutherial ancestors)
were small-brained, nocturnal, squirrel-like animals of
reduced visual abilities with a telencephalon containing
only a minor neocortical fraction [47,50]. For instance,
endocast analysis of a representative stem eutherian
from the late cretaceous indicates a total anterior-pos-
terior extent of 4 mm for its entire neocortex [47,50].
Similarly, the tenrec (Echinops telfari), one of the closest
living relatives of the boreoeutherian ancestor [51,52],
has a neocortex of essentially the same size and a visual
cortex that totals only 2 mm?® [47]. Since the neocortex
of early mammals was subdivided into several cortical
areas [47] and orientation hypercolumns measure
between 0.4 and 1.4 mm? [38], it is difficult to envision
ancestral eutherians with a system of orientation col-
umns. In fact, no extant mammal with a visual cortex of
such size is known to possess orientation columns [53].
It is therefore conceivable that systems of orientation
columns independently evolved in laurasiatheria (such
as carnivores) and in euarchonta (such as tree shrews
and primates). Because galagos, tree-shrews, and ferrets
strongly differ in habitat and ecologically relevant visual
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behaviors, it is not obvious that the quantitative similar-
ity of pinwheel layout rules in their lineages evolved dri-
ven by specific functional selection pressures (see [54]
for an extended discussion). Kaschube et al. instead
demonstrated that an independent emergence of identi-
cal layout rules for pinwheels and orientation columns
can be explained by mathematically universal properties
of a wide class of models for neural circuit self-
organization.

According to the self-organization scenario, the com-
mon design would result from developmental con-
straints robustly imposed by adopting a particular kind
of self-organization mechanism for constructing visual
cortical circuitry. Even if this scenario is correct, one
question still remains: What drove the different lineages
to adopt a similar self-organization mechanism? As
pointed out above, it is not easy to conceive that this
adoption was favored by the specific demands of their
particular visual habitats. It is, however, conceivable that
general requirements for a versatile and representation-
ally powerful cortical circuit architecture are realized by
the common design. If this was true, the evolutionary
benefit of meeting these requirements might have driven
the adoption of large-scale self-organization and the
emergence of the common design over evolutionary
times.

The most prominent candidate for such a general
requirement is the hypothesis of a coverage-continuity-
compromise (e.g., [19,21,55,56]). It states that the
columnar organization is shaped to achieve an optimal
tradeoff between the coverage of the space of visual sti-
mulus features and the continuity of their cortical repre-
sentation. On the one hand, each combination of
stimulus features should be well represented in a corti-
cal map to avoid ‘blindness’ to stimuli with particular
feature combinations. On the other hand, the wiring
cost to establish connections within the map of orienta-
tion preference should be kept low. This can be
achieved if neurons that are physically close in the cor-
tex tend to have similar stimulus preferences. These two
design goals generally compete with each other. The
better a cortical representation covers the stimulus
space, the more discontinuous it has to be. The tradeoff
between the two aspects can be modeled in what is
called a dimension reduction framework in which corti-
cal maps are viewed as two-dimensional sheets which
fold and twist in a higher-dimensional stimulus space
(see Figure 1) to cover it as uniformly as possible while
minimizing some measure of continuity [21,57,58].

From prior work, the coverage-continuity-compromise
appears to be a promising candidate for a principle to
explain visual cortical functional architecture. First,
many studies have reported good qualitative agreement
between the layout of numerically obtained dimension
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Figure 1 The dimension reduction framework. In the dimension reduction framework, the visual cortex is modeled as a two-dimensional
sheet that twists in a higher-dimensional stimulus (or feature) space to cover it as uniformly as possible while minimizing some measure of
continuity (left). In this way, it represents a mapping from the cortical surface to the manifold of visual stimulus features such as orientation and
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reducing maps and experimental observations
[19,21,42,55-57,59-71]. Second, geometric relationships
between the representations of different visual features
such as orientation, spatial frequency, and OD have
been reproduced by dimension reduction models
[25,56,63-65,67,68,72].

Mathematically, the dimension reduction hypothesis
implies that the layouts of cortical maps can be under-
stood as optima or near optima (global or local minima)
of a free energy functional which penalizes both ‘stimu-
lus scotomas’ and map discontinuity. Unfortunately,
there is currently no dimension reduction model for
which the precise layouts of optimal or nearly optimal
solutions have analytically been established. To justify
the conclusion that the tradeoff between coverage and
continuity favors the common rules of OPM design
found in experiment, knowledge of optimal dimension-
reducing mappings however appears essential.

Precise knowledge of the spatial organization of opti-
mal and nearly optimal mappings is also critical for dis-
tinguishing between optimization theories and frozen
noise scenarios of visual cortical development. In a fro-
zen noise scenario, essentially random factors such as
haphazard wiring [73], the impact of spontaneous activ-
ity patterns [74], or an idiosyncratic set of visual experi-
ences [75] determine the emerging pattern of preferred
orientations. This pattern is then assumed to be ‘frozen’
by an unknown mechanism, capable of preventing
further modification of preferred orientations by
ongoing synaptic turnover and activity-dependent plasti-
city. Conceptually, a frozen noise scenario is diametri-
cally opposed to any kind of optimization theory. Even
if the reorganization of the pattern prior to freezing was

to follow a gradient descent with respect to some cost
function, the early stopping implies that the layout is
neither a local nor a global minimum of this functional.
Importantly, the layout of transient states is known to
exhibit universal properties that can be completely inde-
pendent of model details [25,32]. As a consequence, an
infinite set of distinct optimization principles will gener-
ate the same spatial structure of transient states. This
implies in turn that the frozen transient layout is not
specifically shaped by any particular optimization princi-
ple. Map layouts will thus in principle only be informa-
tive about design or optimization principles of cortical
processing architectures if maps are not just frozen
transients.

In practice, however, the predictions of frozen noise
and optimization theories might be hard to distinguish.
Ambiguity between these mutually exclusive theories
would result in particular, if the energy landscape of the
optimization principle is so ‘rugged’ that there is essen-
tially a local energy minimum next to any relevant ran-
dom arrangement. Dimension reduction models are
conceptually related to combinatorial optimization pro-
blems like the traveling salesman problem (TSP) and
many such problems are believed to exhibit rugged
energy landscapes [76-78]. It is therefore essential to
clarify whether paradigmatic dimension reduction mod-
els are characterized by a rugged or a smooth energy
landscape. If their energy landscapes were smooth with
a small number of well-separated local minima, their
predictions would be easy to distinguish from those of a
frozen noise scenario.

In this study, we examine the classical example of a
dimension reduction model, the elastic network (EN)
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model. Since the seminal work of Durbin and Mitchison
[21], the EN model has widely been used to study visual
cortical representations [25,42,62-65,69-72,79]. The EN
model possesses an explicit energy functional which
trades off a matching constraint which matches cortical
cells to particular stimulus features via Hebbian learn-
ing, with a continuity constraint that minimizes Eucli-
dean differences in feature space between neighboring
points in the cortex [63]. In two ways, the EN model’s
explicit variational structure is very appealing. First, cov-
erage and continuity appear as separate terms in the
free energy which facilitates the dissection of their rela-
tive influences. Second, the free energy allows for the
formulation of a gradient descent dynamics. The emer-
gence of cortical selectivity patterns and their conver-
gence toward a minimal energy state in this dynamics
might serve as a model for an optimization process tak-
ing place in postnatal development.

Following Durbin and Mitchison, we consider the EN
model for the joint mapping of two visual features: (i)
position in visual space, represented in a retinotopic
map (RM) and (ii) line orientation, represented in an
OPM. To compute optimal dimension-reducing map-
pings, we first develop an analytical framework for
deriving closed-form expressions for fixed points, local
minima, and optima of arbitrary optimization models
for the spatial layout of OPMs and RMs in which pre-
dicted maps emerge by a supercritical bifurcation as
well as for analyzing their stability properties. By apply-
ing this framework to different instantiations of the EN
model, we systematically disentangle the effects of indi-
vidual model features on the repertoire of optimal solu-
tions. We start with the simplest possible model version,
a fixed uniform retinotopy and an orientation stimulus
ensemble with only a single orientation energy and then
relax the uniform retinotopy assumption incorporating
retinotopic distortions. An analysis for a second widely
used orientation stimulus ensemble including also unor-
iented stimuli is given in Appendix 1. Surprisingly, in all
cases, our analysis yields pinwheel-free orientation
stripes (OSs) or stereotypical square arrays of pinwheels
as local minima or optimal orientation maps of the EN
model. Numerical simulations of the EN confirm these
findings. They indicate that more complex spatially
aperiodic solutions are not dominant and that the
energy landscape of the EN model is rather smooth.
Our results demonstrate that while aperiodic stationary
states exist, they are generally unstable in the considered
model versions.

To test whether the EN model is in principle capable
of generating complex spatially aperiodic optimal orien-
tation maps, we then perform a comprehensive unbiased
search of the EN optima for arbitrary orientation stimu-
lus distributions. We identify two key parameters
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determining pattern selection: (i) the intracortical inter-
action range and (ii) the fourth moment of the orienta-
tion stimulus distribution function. We derive complete
phase diagrams summarizing pattern selection in the EN
model for fixed as well as variable retinotopy. Small
interaction ranges together with low to intermediate
fourth moment values lead to pinwheel-free OSs, rhom-
bic, or hexagonal crystalline orientation map layouts as
optimal states. In the regime of large interaction ranges
together with higher fourth moment, we find irregular
aperiodic OPM layouts with low pinwheel densities as
optima. Only in an extreme and previously unconsid-
ered parameter regime of very large interaction ranges
and stimulus ensemble distributions with an infinite
fourth moment, optimal OPM layouts in the EN model
resemble experimentally observed aperiodic pinwheel-
rich layouts and quantitatively reproduce the recently
described species-invariant pinwheel statistics. Unex-
pectedly, we find that the stabilization of such layouts is
not achieved by an optimal tradeoff between coverage
and continuity of a localized population encoding by the
maps but results from effectively suppressive long-range
intracortical interactions in a spatially distributed repre-
sentation of localized stimuli.

We conclude our reexamination of the EN model with
a comparison between different numerical schemes for
the determination of optimal or nearly optimal map-
pings. For large numbers of stimuli, numerically deter-
mined solutions match our analytical predictions,
irrespectively of the computational method used.

Results and discussion

Model definition and model symmetries

We analyze the EN model for the joint optimization of
position and orientation selectivity as originally intro-
duced by Durbin and Mitchison [21]. In this model, the
RM is represented by a mapping R(x) = (R;(x), Rx(x))
which describes the receptive field center position of a
neuron at cortical position x. Any RM can be decom-
posed into an affine transformation x —» X from cortical
to visual field coordinates, on which a vector-field of
retinotopic distortions r(x) is superimposed, i.e.:

R(x) = X +1(x)

with appropriately chosen units for x and R.

The OPM is represented by a second complex-valued
scalar field z(x). The pattern of orientation preferences 9
(x) is encoded by the phase of z(x) via

U(x) = ; arg(z(x)).

The absolute value |z(x)| is a measure of the average
cortical selectivity at position x. Solving the EN model
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requires to find pairs of maps {r(x), z(x)} that represent
an optimal compromise between stimulus coverage and
map continuity. This is achieved by minimizing a free
energy functional

F=02C+R (1)

in which the functional ¢ measures the coverage of a
stimulus space and the functional R the continuity of
its cortical representation. The stimulus space is defined
by an ensemble {S} of idealized point-like stimuli, each
described by two features: s, = |s,|e*? and s, = (825y)
which specify the orientation 6§ of the stimulus and its
position in visual space s, (Figure 2b). C and R are
given by

Clz 1] = _<1n/d2ye(sZZ(y)2+|srXr(y)lz)/2U2>
s

2
1
Rlz,tl = ) [ dynlvaie «n Y 1v5ee,
j=1

with V = (,, 3,)7, and 17 € [0, 1]. The ratios o */n and
o 2/n, control the relative strength of the coverage term
versus the continuity term for OPM and RM, respec-
tively. (...)s denotes the average over the ensemble of
stimuli.

Minima of the energy functional F are stable fixed
points of the gradient descent dynamics

8F|z 1]

dz(x) = -2 57(x) = F[z, r|(x) o
ar(x) = _8;[&;] = Fzr](x)

called the EN dynamics in the following. These
dynamics read

dz(x) = ([se—z(x)]e(x, 8,z 1)) +nAz(x)  (3)

dr(x) = ([sr—X—-r(x)]e(xS z r))s + nrAr(x), (4)

where e(x, S, z, r) is the activity-pattern, evoked by a
stimulus S = (s,, s;) in a model cortex with retinotopic
distortions r(x) and OPM z(x). It is given by

o~ (Isr=X—1(x)*)/202 ,—(Is:—2(x)|*)/20

e(x,.. 2 2 '
[ d2ye~(Is—X—t(3)P)/207 g~(Isc—2(y) ")/ 20

) =

Figure 2 illustrates the general features of the EN
dynamics using the example of a single stimulus. Figure
2a shows a model orientation map with a superimposed
uniform representation of visual space. A single point-
like, oriented stimulus S = (s,, s,) with position s, = (s,
s,) and orientation ¢ = 1/2 arg(s,) (Figure 2b) evokes a
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cortical activity pattern e(x, S, z, r) (Figure 2c). The
activity-pattern in this example is of roughly Gaussian
shape and is centered at the point, where the location s,
of the stimulus is represented in cortical space. How-
ever, depending on the model parameters and the sti-
mulus, the cortical activity pattern may assume as well a
more complex form (see also ‘Discussion’ section).
According to Equations (3, 4), each stimulus and the
evoked activity pattern induce a modification of the
orientation map and RM, shown in Figure 2d. Orienta-
tion preference in the activated regions is shifted toward
the orientation of the stimulus. The representation of
visual space in the activated regions is locally contracted
toward the position of the stimulus. Modifications of
cortical selectivities occur due to randomly chosen sti-
muli and are set proportional to a very small learning
rate. Substantial changes of cortical representations
occur slowly through the cumulative effect of a large
number of activity patterns and stimuli. These effective
changes are described by the two deterministic equa-
tions for the rearrangement of cortical selectivities equa-
tions (3, 4) which are obtained by stimulus-averaging
the modifications due to single activity patterns in the
discrete stimulus model [25]. One thus expects that the
optimal selectivity patterns and also the way in which
cortical selectivities change over time are determined by
the statistical properties of the stimulus ensemble. In
the following, we assume that the stimulus ensemble
satisfies three properties: (i) The stimulus locations s,
are uniformly distributed across visual space. (ii) For the
distribution of stimulus orientations, |s,| and 6 are inde-
pendent. (iii) Orientations 6 are distributed uniformly in
[0, m].

These conditions are fulfilled by stimulus ensembles
used in virtually all prior studies of dimension reduction
models for visual cortical architecture (e.g.,
[19,21,25,64,65,71,72,80,81]). They imply several symme-
tries of the model dynamics equations (3, 4). Due to the
first property, the EN dynamics are equivariant under
translations

]A“yz(x) = z(x+y)

Tyr(x) = r1(x+y),
rotations

Rpz(x) = €Pz(Q_px)

Rer(x) =  Qpr(Q2_px)

with 2x2 rotation matrix

Qu = cos B —sin
B~ \sinp cosp )’
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Figure 2 The EN model. (a) Example OPM (color code) together with a uniform map of visual space (RM) (grid lines). (b) Position s, = (s,, s,)
and orientation € of a ‘pointlike’ stimulus. (c) Cortical activity, evoked by the stimulus in b for the model maps in a. Dark regions are activated.
Note, that in contrast to SOFM models, the activity pattern does not exhibit a stereotypical Gaussian shape. (d) Modification of orientation
preference and retinotopy, caused by the stimulus in b. Orientation preferences prior to stimulus presentation are indicated with grey bars, after
stimulus presentation with black bars. Most strongly modified preferences correspond to thick black bars. Modifications of orientation
preferences and retinotopy are displayed on an exaggerated scale for illustration purposes.

J

and reflections TYFZ 1] = Fz[f’yz, Tyr] 5)
Pz(x) = Z(¥x)

f)r(x) - \I/I'(\I/X), RﬂFZ[Z, l‘] = FZ[Rﬂz, Rﬂl’] (6)

where ¥ = diag(-1, 1) is the 2x2 reflection matrix. ﬁFZ[z, q - Fz[ﬁz, 131'], @)

Equivariance means that
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with mutatis mutandis the same equations fulfilled by
the vector-field F'[z, r].

As a consequence, patterns that can be converted into
one another by translation, rotation, or reflection of the
cortical layers represent equivalent solutions of the
model equations (3, 4), by construction. Due to the sec-
ond assumption, the dynamics is also equivariant with
respect to shifts in orientation Syz(x) = e%z(x), ie.,

é?Fz, 1] = Fle?zr] 8)

Flz 1] = Fle?zr]. &)

Thus, two patterns are also equivalent solutions of the
model, if their layout of orientation domains and retino-
topic distortions is identical, but the preferred orienta-
tions differ everywhere by the same constant angle.

Without loss of generality, we normalize the ensem-
bles of orientation stimuli such that (|s;|?)g = {|s;|?) = 2
throughout this article. This normalization can always
be restored by a rescaling of z(x) (see [25,69]).

Our formulation of the dimension-reduction problem
in the EN model utilizes a continuum description, both
for cortical space and the set of visual stimuli. This facil-
itates mathematical treatment and appears appropriate,
given the high number of cortical neurons under one
square millimeter of cortical surface (e.g., roughly 70000
in cat V1 [82]). Even an hypothesized neuronal mono-
layer would consist of more than 20 x 20 neurons per
hypercolumn area A% constituting a quite dense sam-
pling of the spatial periodicity. Treating the feature
space as a continuum implements the concept that the
cortical representation has to cover as good as possible
the infinite multiplicity of conceivable stimulus feature
combinations.

The orientation unselective fixed point

Two stationary solutions of the model can be estab-
lished from symmetry. The simplest of these is the
orientation unselective state with z(x) = 0 and uniform
mapping of visual space r(x) = 0. First, by the shift sym-
metry (Equation (8)), we find that z(x) = 0 is a fixed
point of Equation (3). Second, by reflectional and rota-
tional symmetry (Equations (5, 7)), we see that the
right-hand side of Equation (4) has to vanish and hence
the orientation unselective state with uniform mapping
of visual space is a fixed point of Equations (3, 4).

This homogeneous unselective state thus minimizes
the EN energy functional if it is a stable solution of Equa-
tions (3, 4). The stability can be determined by consider-
ing the linearized dynamics of small deviations {r(x), z
(x)} around this state. These linearized dynamics read
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(x-y)’

Ly[r] = 1671“74 /d2y97 402 Ar(y) +n, Ar(x) (10)

r(x) =~

(x-y)*
dz(x) ~ Lfz] = (012 - 1>z(x) +nAz(x) — 471104 /dlye‘ o z(y), (11)

where (A),»,- = (x; - ¥ - y) -2025L7 with ¢;; being Kro-
necker’s delta. We first note that the linearized
dynamics of retinotopic distortions and orientation pre-
ference decouple. Thus, up to linear order and near the
homogeneous fixed point, both cortical representation
evolve independently and the stability properties of the
unselective state can be obtained by a separate examina-
tion of the stability properties of both cortical
representations.

The eigenfunctions of the linearized retinotopy
dynamics L,[r] can be calculated by Fourier-transform-
ing Equation (10):

2
8= 3 ) 60
j=1

where k = |k| and i = 1, 2. A diagonalization of this
matrix equation yields the eigenvalues

AL = =k (n, + e“’zkzaz), A= —n, kP
with corresponding eigenfunctions (in real space)

kpe X + c.c.
k¢+n/2elk¢" +cC.C.,

r.(x)

rr(x) =
where k, = |k|(cos ¢, sin ¢)”. These eigenfunctions
are longitudinal (L) or transversal (T) wave patterns. In
the longitudinal wave, the retinotopic distortion vector r
(x) lies parallel to k which leads to a ‘compression wave’
(Figure 3b, left). In the transversal wave pattern (Figure
3b, right), the retinotopic distortion vector is orthogonal
to k. We note that the linearized Kohonen model [61]
was previously found to exhibit the same set of eigen-
functions [80]. Because both spectra of eigenvalues AT,
Apare smaller than zero for every ¢ >0, 17, >0, and k >0
(Figure 3a), the uniform retinotopy r(x) = 0 is a stable
fixed point of Equation (4) irrespective of parameter
choice.

The eigenfunctions of the linearized OPM dynamics
L,[z] are Fourier modes ~ ™ by translational symme-
try. By rotational symmetry, their eigenvalues only
depend on the wave number k and are given by

W) = —1+ 012 (1 - e’k2“2> — nk?
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+n/2eik¢x + ¢.c. (right). (c) Spectrum of eigenvalues of the linearized OPM dynamics (red
trace) for o < o*(n). Orange region marks the unstable annulus of Fourier modes (critical circle). (d) Stability regions of the nonselective state in
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(see [25]). This spectrum of eigenvalues is depicted in
Figure 3c. For n >0, A%(k) has a single maximum at

ke = ;\/In (1/n). For

o>0*(n)=+1+nlnn—n, (12)

this maximal eigenvalue r = 1%(k,) is negative. Hence,
the unselective state with uniform retinotopy is a stable
fixed point of Equations (3, 4) and the only known solu-
tion of the EN model in this parameter range. For o <
o*(n), the maximal eigenvalue r is positive, and the non-
selective state is unstable with respect to a band of
Fourier modes ~ ™™ with wave numbers around |k| ~
k. (see Figure 3c). This annulus of unstable Fourier
modes is called the critical circle. The finite wavelength
instability [83-85] (or Turing instability [86]) leads to
the emergence of a pattern of orientation preference
with characteristic spacing A = 27/k, from the nonselec-
tive state on a characteristic timescale 7 = 1/r.

One should note that as in other models for the self-
organization of orientation columns, e.g., [15,57], the
characteristic spatial scale A arises from effective intra-
cortical interactions of ‘Mexican-hat’ structure (short-
range facilitation, longer-ranged suppression). The
short-range facilitation in the linearized EN dynamics is
represented by the first two terms on the right-hand
side of Equation (11). Since o <1 in the pattern forming
regime, the prefactor in front of the first term is posi-
tive. Due to the second, Laplacian term, it is favored
that neighboring units share selectivity properties, a pro-
cess mediated by short-range facilitation. Longer-ranged
suppression is represented by the convolution term in
Equation (11).

Mathematically, this term directly results from the
soft-competition in the ‘activity-dependent’ coverage
term of Equation (1). The local facilitation is jointly
mediated by coverage (first term) and continuity (second
term) contributions.
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Figure 3d summarizes the result of the linear stability
analysis of the nonselective state. For o > o*(1), the
orientation unselective state with uniform retinotopy is
a minimum of the EN-free energy and also the global
minimum. For 0 < ¢*(1)), this state represents a maxi-
mum of the energy functional and the minima must
thus exhibit a space-dependent pattern of orientation
selectivities.

Orientation stripes

Within the potentially infinite set of orientation selective
fixed points of the model, one class of solutions can be
established from symmetry: {r(x) = 0, z(x) = Ape™™ . In
these pinwheel-free states, orientation preference is con-
stant along one axis in cortex (perpendicular to the vec-
tor k), and each orientation is represented in equal
proportion (see Figure 4a). Retinotopy is perfectly uni-
form. Although this state may appear too simple to be
biologically relevant, we will see that it plays a funda-
mental role in the state space of the EN model. It is
therefore useful to establish its existence and basic char-
acteristics. The existence of OS solutions follows directly
from the model’s symmetries (Equations (5) to (9)).
Computing

Ty[F[e™, 0]] = F*[Ty[e™], Ty[0]] = FF[e"e™, 0] = ™ F[™, 0]

demonstrates that F°[¢’™, 0] is proportional to e’
This establishes that the subspace of functions ~ ¢ is
invariant under the dynamics given by Equation (3). For
Ay = 0, we recover the trivial fixed point of the EN
dynamics by construction, as shown above. This means
that within this subspace Ay = 0 is either a minimum or
a maximum of the EN energy functional (Equation (1)).
Furthermore, for Ag — o the EN energy tends to infi-
nity. If the trivial fixed point is unstable, it corresponds
to a maximum of the EN energy functional. Therefore,
there must exist at least one minimum with Ay # 0 in
the subspace of functions ~ ¢ which then corresponds
to a stationary state of the EN dynamics.

Regarding the dynamics of retinotopic deviations, the
model’s symmetries equations can be invoked to show
that for the state {0, Age™}, the right-hand side of
Equation (4) has to be constant in space:

Ty[F'[e™, 0]] = F[Ty[e™], Ty[0]] = F'[e™e™, 0] = F'[e™, 0]

If this constant was nonzero the RM would drift with
constant velocity. This, however, is impossible in a var-
iational dynamics such that this constant must vanish.
The OS solution (Figure 4a) is to the best of our knowl-
edge the only exact nontrivial stationary solution of
Equations (3, 4) that can be established without any
approximations.
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Doubly periodic and quasi-periodic solutions

In the EN model as considered in this study, the maps
of visual space and orientation preference are jointly
optimized to trade off coverage and continuity leading
to mutual interactions between the two cortical repre-
sentations. These mutual interactions vanish in the rigid
retinotopy limit 77, — < and the perfectly uniform reti-
notopy becomes an optimal solution for arbitrary orien-
tation column layout z(x). As it is not clear how
essential the mutual interactions with position specificity
are in shaping the optimal orientation column layout,
we continue our investigation of solution classes by con-
sidering global minima of optimization models with
fixed uniform retinotopy. The mutual interactions will
be taken into account in a subsequent step.

In the rigid retinotopy limit, minima of the energy
functional are stable stationary states of the dynamics of
the OPM (Equation (3)) with r(x) = 0. To compute
orientation selective stationary solutions of this OPM
dynamics, we employ that in the vicinity of a supercriti-
cal bifurcation where the nonselective fixed point z(x) =
0 becomes unstable, the entire set of nontrivial fixed
points is determined by the third-order terms of the
Volterra series representation of the operator F*[z, 0]
[35,84,85,87]. The symmetries given by Equations (5) to
(9) restrict the general form of such a third-order
approximation for any model of OPM optimization to

8iz(x) ~ L|z] + N§|z 2, Z], (13)

where the cubic operator N% is written in trilinear
form, ie.,

N3 Z%’Zj, Zﬂka, Z vz | = ZajﬂkV1N§ [, 2k, Z1].
j k ] ikl

In particular, all even terms in the Volterra Series
representation of F°[z, 0] vanish due to the Shift-Sym-
metry (Equations (8, 9)). Explicit analytic computation
of the cubic nonlinearities for the EN model is cumber-
some but not difficult (see ‘Methods’ section) and yields
a sum

1
Nilz z,z] = Z:aj[\]]3 [z z z].
j=1

(14)

The individual nonlinear operators N, are with one

exception nonlocal convolution-type operators and are
given in the ‘Methods’ section (Equation (38)), together
with a detailed description of their derivation.

Only the coefficients @; depend on the properties of
the ensemble of oriented stimuli.
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Figure 4 Exact and approximate orientation selective fixed points of OPM optimization models. (a) Pinwheel-free OS pattern. Diagram
shows the position of the wave vector in Fourier space. (b) rPWC with four nonzero wave vectors. (c) Essentially complex planforms (ECPs). The
index n indicates the number of nonzero wave vectors. The index i enumerates nonequivalent configurations of wave vectors with the same n,
starting with i = 0 for the most anisotropic planform. For n = 3, 5, and 15, there are 2, 4, and 612 different ECPs, respectively. OPM layouts
become more irregular with increasing n.
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To calculate the fixed points of Equation (13), we use
a perturbative method called weakly nonlinear analysis
that enables us to analytically examine the structure and
stability of inhomogeneous stationary solutions in the
vicinity of a finite-wavelength instability. Here, we exam-
ine the stability of so-called planforms [83-85]. Plan-
forms are patterns that are composed of a finite number
of Fourier components, such as

2(x) = )40
j

for a pattern of orientation columns. With the above
planform ansatz, we neglect any spatial dependency of
the amplitudes A;(¢) for example due to long-wave
deformations for the sake of simplicity and analytical
tractability. When the dynamics is close to a finiite
wavelength instability, the essential Fourier components
of the emerging pattern are located on the critical circle
|k;| = k.. The dynamic equations for the amplitudes of
these Fourier components are called amplitude equa-
tions. For a discrete number of N Fourier components
of z(x) whose wave vectors lie equally spaced on the cri-
tical circle, the most general system of amplitude equa-

tions compatible with the model’s symmetries
(Equations (5) to (9)) has the form [35,87]
N N
Ai=1Ai = A Y gilAR — A ) fiAjA;-, (15)

1 1

with r >0. Here, g;; and f;; are the real-valued coupling
coefficients between the amplitudes A; and A;. They
depend on the differences between indices |i - j| and are
entirely determined by the nonlinearity N[z z,z] in
Equation (13). If the wave vectors k; = (cos ¢;, sin o)k,
are parameterized by the angles «;, then the coefficients
g; and fj; are functions only of the angle o = |o; - o]
between the wave vectors k; and k;. One can thus obtain
the coupling coefficients from two continuous functions
g(a) and flo) that can be obtained from the nonlinearity
Nj[z, z,z] (see ‘Methods’ section for details). In the fol-
lowing, these functions are called angle-dependent inter-
action functions. The amplitude equations are
variational if and only if g;; and f; are real-valued. In this
case they can be derived through
. AU,
A](t) - aAI

from an energy

N N N
1 1 .
Us=—rY A7+ Y gl 1Al + ) 3 fAidi-AjAy-. (16)
i=1

ij=1 ij=1
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If the coefficients g; and f;; are derived from Equation
(1), the energy U, for a given planform solution corre-
sponds to the energy density of the EN energy func-
tional considering only terms up to fourth-order in z(x).

The amplitude equations (15) enable to calculate an
infinite set of orientation selective fixed points. For the
above OS solution with one nonzero wave vector z(x) =
Aoe™, the amplitude equations predict the so far unde-
termined amplitude

, T
|Aol® =~ (17)
1
and its energy
Uos=— (18)
O gy

Since g;; >0, this shows that OS stationary solutions
only exist for r >0, i.e., in the symmetry breaking
regime. As for all following fixed-points, Ungs specifies
the energy difference to the homogeneous unselective
state z(x) = 0.

A second class of stationary solutions can be found
with the ansatz

z(x) = AKX 4 Aye™oX 4 Aze X Ao Tkex

with amplitudes A; = |A,—|ei“’f and «(ky, k) = o >0. By
inserting this ansatz into Equation (15) and assuming
uniform amplitude |A;| = |A2| = |A2] = |A4] = A,
we obtain

2 T

= . 19
800 + &orr + 8o + §or—a — 2foa (19)

The phase relations of the four amplitudes are given
by

¢1+ @3
P2 + P4

These solutions describe a regular rhombic lattice of
pinwheels and are therefore called rhombic pinwheel
crystals (rPWCs) in the following. Three phases can be
chosen arbitrarily according to the two above condi-
tions, e.g., @9, Ap = @1 - @3 and Ay = ¢, - @4. For an
rPWC parameterized by these phases, Aq shifts the
absolute positions of the pinwheels in x-direction, A;
shifts the absolute positions of the pinwheels in y-direc-
tion, and ¢, shifts all the preferred orientations by a
constant angle. The energy of an rPWC solution is

$o

¢0+7T.

2r

. 20
800 + 8o + 8o + §or—a — 2foa (20)

Uipwe = —
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An example of such a solution is depicted in Figure
4b. We note that rPWCs have been previously found in
several other models for OPM development
[27,31,37,39,88]. The pinwheel density p of an rPWC, i.
e., the number of pinwheels in an area of size A2 is
equal to p = 4 sin a [54]. The angle o which minimizes
the energy U, pwc can be computed by maximizing the
function

s() = 8oa + 8ox—a — 2foa (21)

in the denominator of Equation (20).

The two solution classes discussed so far, namely OS
and rPWCs, exhibit one prominent feature, absent in
experimentally observed cortical OPMs, namely perfect
spatial periodicity. Many cortical maps including OPMs
do not resemble a crystal-like grid of repeating units.
Rather the maps are characterized by roughly repetitive
but aperiodic spatial arrangement of feature preferences
(e.g., [5,10]). This does not imply that the precise layout
of columns is arbitrary. It rather means that the rules of
column design cannot be exhaustively characterized by
mapping a ‘representative’ hypercolumn.

Previous studies of abstract models of OPM develop-
ment introduced the family of so-called essentially com-
plex planforms (ECPs) as stationary solutions of
Equation (15). This solution class encompasses a large
variety of realistic quasi-periodic OPM layouts and is
therefore a good candidate solution class for models of
OPM layouts. In addition, Kaschube et al. [38] demon-
strated that models in which these are optimal solutions
can reproduce all essential features of the common
OPM design in ferret, tree-shrew, and galago. An n-ECP
solution can be written as

n
z(x) = ZAjeilfkf",

j=1

with 7 = N/2 wave vectors k; = k.(cos(7zj/n), sin(1j/n))
distributed equidistantly on the upper half of the critical
circle, complex amplitudes A; and binary variables /; =
+1 determining whether the mode with wave vector k;
or -k; is active (nonzero). Because these planforms can-
not realize a real-valued function they are called essen-
tially complex [35]. For an #-ECP, the third term on the
right-hand side of Equation (15) vanishes and the ampli-
tude equations for the active modes A; reduce to a sys-
tem of Landau equations

n
Ai=TA; — A Zgij|Aj|2,
j=1

where g;; is the n x n-coupling matrix for the active
modes. Consequently, the stationary amplitudes obey
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n

AP =1) (87", (22)
j=1
The energy of an n-ECP is given by
r _
Ugcp = Ty Z (g l)ij- (23)

ij

We note that this energy in general depends on the
configuration of active modes, given by the /s, and
therefore planforms with the same number of active
modes may not be energetically degenerate.

Families of n-ECP solutions are depicted in Figure 4c.
The 1-ECP corresponds to the pinwheel-free OS pattern
discussed above. For fixed n > 3, there are multiple
planforms not related by symmetry operations which
considerably differ in their spatial layouts. For n > 4, the
patterns are spatially quasi-periodic, and are a generali-
zation of the so-called Newell-Pomeau turbulent crystal
[89,90]. For n > 10, their layouts resemble experimen-
tally observed OPMs. Different n-ECPs however differ
considerably in their pinwheel density. Planforms whose
nonzero wave vectors are distributed isotropically on the
critical circle typically have a high pinwheel density (see
Figure 4c, n = 15 lower right). Anisotropic planforms
generally contain considerably fewer pinwheels (see Fig-
ure 4c¢, n = 15 lower left). All large n-ECPs, however,
exhibit a complex quasi-periodic spatial layout and a
nonzero density of pinwheels.

In order to demonstrate that a certain planform is an
optimal solution of an optimization model for OPM lay-
outs in which patterns emerge via a supercritical bifur-
cation, we not only have to show that it is a stationary
solution of the amplitude equations but have to analyze
its stability properties with respect to the gradient des-
cent dynamics as well as its energy compared to all
other candidate solutions.

Many stability properties can be characterized by
examining the amplitude equations (15). In principle,
the stability range of an n-ECPs may be bounded by two
different instability mechanisms: (i) an intrinsic instabil-
ity by which stationary solutions with # active modes
decay into ones with lower 7. (ii) an extrinsic instability
by which stationary solutions with a ‘too low’ number of
modes are unstable to the growth of additional active
modes. These instabilities can constrain the range of
stable # to a small finite set around a typical n [35,87].
A mathematical evaluation of both criteria leads to pre-
cise conditions for extrinsic and intrinsic stability of a
planform (see ‘Methods’ section). In the following, a
planform is said to be stable, if it is both extrinsically
and intrinsically stable. A planform is said to be an opti-
mum (or optimal solution) if it is stable and possesses
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the minimal energy among all other stationary planform
solutions.

Taken together, this amplitude equation approach
enables to analytically compute the fixed points and
optima of arbitrary optimization models for visual corti-
cal map layout in which the functional architecture is
completely specified by the pattern of orientation col-
umns z(x) and emerges via a supercritical bifurcation.
Via a third-order expansion of the energy functional
together with weakly nonlinear analysis, the otherwise
analytically intractable partial integro-differential equa-
tion for OPM layouts reduces to a much simpler system
of ordinary differential equations, the amplitude equa-
tions. Using these, several families of solutions, OSs,
rPWCs, and essentially complex planforms, can be sys-
tematically evaluated and comprehensively compared to
identify sets of unstable, stable and optimal, i.e., lowest
energy fixed points. As already mentioned, the above
approach is suitable for arbitrary optimization models
for visual cortical map layout in which the functional
architecture is completely specified by the pattern of
orientation columns z(x) which in the EN model is ful-
filled in the rigid retinotopy limit. We now start by con-
sidering the EN optimal solutions in this limit and
subsequently generalize this approach to models in
which the visual cortical architecture is jointly specified
by maps of orientation and position preference that are
matched to one another.

Representing an ensemble of ‘bar’-stimuli

We start our investigation of optimal dimension-redu-
cing mappings in the EN model using the simplest and
most frequently used orientation stimulus ensemble, the
distribution with s,-values uniformly arranged on a ring
with radius r;, = V/2[57,64-66,91]. We call this stimulus
ensemble the circular stimulus ensemble in the follow-
ing. According to the linear stability analysis of the non-
selective fixed point, at the point of instability, we
choose 0 = 0*(7n) such that the linearization given in
Equation (11) is completely characterized by the conti-
nuity parameter 7. Equivalent to specifying 1 is to fix
the ratio of activation range o and column spacing A

oA =" \iog(1/n) (24)
2w

as a more intuitive parameter. This ratio measures the
effective interaction-range relative to the expected spa-
cing of the orientation preference pattern. In abstract
optimization models for OPM development a similar
quantity has been demonstrated to be a crucial determi-
nant of pattern selection [35,87]. We note, however, that
due to the logarithmic dependence of /A on 7, a slight
variation of the effective interaction range may
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correspond to a variation of the continuity parameter 7
over several orders of magnitude. In order to investigate
the stability of stationary planform solutions in the EN
model with a circular orientation stimulus ensemble, we
have to determine the angle-dependent interaction func-
tions g(a) and fler). For the coefficients a; in Equation
(14) we obtain

1

_ _ 1 1 — 1 —__ 1 1
a1 = 456 ot T 202 @2 = yro6 8ro® 43 = = 16708 * ?mr"’
P TR ae = — = 17

4 87ltcr3 47{0"1 8mot 5 1?7{08 6 = 8ro6 5 16708
az = 1271210'10 - 127!2105 as = 24712{71“ 49 = = gan3p12
dayp = 1272010 127208 an = 2472510

The angle-dependent interaction functions of the EN
model with a circular orientation stimulus ensemble are
then given by

oe) - 1 (1 _ gglot _ e (cosa1) (1 _ 2€4zfalcosa))
4
o

1 3 8
. (ezkfa?(com—l) _ 1) + e 2K sinh?(1/2k20 cos @)
202 ot (25)
1
fl@) =, (1= (cosh(2kio? cosa) + 2 cosh(kio™ cosa)) + 2¢7")
1

4 .
gl (e’mz”Z cosh(2k?o% cosar) — 1) + 6e’”‘f”Z sinh* (1/2k20 cosa) .
o o

These functions are depicted in Figure 5 for two dif-
ferent values of the interaction range o/A. We note that
both functions are positive for all 6/A which is a suffi-
cient condition for a supercritical bifurcation from the
homogeneous nonselective state in the EN model.

Finally, by minimizing the function s() in Equation
(21), we find that the angle o which minimizes the
energy of the rPWC fixed-point is o = 7/2. This corre-
sponds to a square array of pinwheels (sPWC). Due to
the orthogonal arrangement oblique and cardinal orien-
tation columns and the maximized pinwheel density of
p = 4, the square array of pinwheels has the maximal
coverage among all rPWC solutions.

Optimal solutions close to the pattern formation threshold

We first tested for the stability of pinwheel-free OS
solutions and the sPWCs, by analytical evaluation of the
criteria for intrinsic and extrinsic stability (see ‘Methods’
section). We found both, OSs and sPWCs, to be intrinsi-
cally and extrinsically stable for all 6/A. Next, we tested
for the stability of n-ECP solutions with 2 < n < 20. We
found all #n-ECP configurations with 2 < n < 20 to be
intrinsically unstable for all 6/A. Hence, none of these
planforms represent optimal solutions of the EN model
with a circular stimulus ensemble, while both OSs and
sPWC are always local minima of the energy functional.

By evaluating the energy assigned to the sPWC (Equa-
tion 20) and the OS pattern (Equation 18), we next
identified two different regimes: (i) For short interaction
range o/A s 0.122 the sPWC possesses minimal energy
and is therefore the predicted global minimum. (ii) For
o/A 2z 0.122 the OS pattern is optimal.

Figure 6a shows the resulting simple phase diagram.
sPWCs and OSs are separated by a phase border at o/A
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Figure 5 Angle-dependent interaction functions for the EN model with fixed retinotopy and circular orientation stimulus ensemble. (a,
b) g(e) and () for 6/A = 0.1 (a) and o/A = 0.2 (b).
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Figure 6 Optlmal solutions of the EN model with a circular orientation stimulus ensemble [57,64-66,91]and fixed representation of
visual space. (a) At criticality, the phase space of this model is parameterized by either the continuity parameter i (blue labels) or the
interaction range o/A (red labels, see text). (b, ) OPMs (b) and their power spectra (c) in a simulation of Equation (3) with r(x) = 0 and r = 0.1,
o/A = 0.1 (n = 067) and circular stimulus ensemble (see also Additional file 1). (d) Analytically predicted optimum for o/A < 0.122 (quadratic
pinwheel crystal). (e) Pinwheel density time courses for four different simulations (parameters as in b; gray traces, individual realizations; black
trace, simulation in b; red trace, mean value). (f) Mean squared amplitude of the stationary pattern, obtained in simulations (parameters as in b)
for different values of the control parameter r (black circles) and analytically predicted value (solid green line). (g, h) OPMs (g) and their power
spectra (h) in a simulation of Equation (3) with r(x) = 0 and o/A = 0.15 (n = 041) (other parameters as in b, see also Additional file 2). (i)
Analytically predicted optimum for o/A 2 0.122 (orientation stripes). (j) Pinwheel density time courses for four different simulations (parameters
as in g; gray traces, individual realizations; black trace, simulation in g; red trace, mean value). (k) Mean squared amplitude of the stationary
pattern, obtained in simulations (parameters as in g) for different values of the control parameter r (black circles) and analytically predicted value
(solid green line).
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~ 0.122. We numerically confirmed these analytical pre-
dictions by extensive simulations of Equation (3) with r
(x) = 0 and the circular stimulus ensemble (see ‘Meth-
ods’ section for details). Figure 6b,c shows snapshots of
a representative simulation with short interaction range
(r=0.1, /A = 0.1 (n = 0.67)) (see also Additional file
1). After the phase of initial pattern emergence (symme-
try breaking), the OPM layout rapidly approaches a
square array of pinwheels, the analytically predicted
optimum (Figure 6d). Pinwheel density time courses
(see ‘Methods’ section) display a rapid convergence to a
value close to the predicted density of 4 (Figure 6e). Fig-
ure 6f shows the stationary mean squared amplitudes of
the pattern obtained for different values of the control
parameter r (black circles). For small control para-
meters, the pattern amplitude is perfectly predicted by
Equation (19) (solid green line). Figure 6g,h shows snap-
shots of a typical simulation with longer interaction
range (r = 0.1, o/A = 0.15 (n = 0.41)) (see also Addi-
tional file 2). After the emergence of an OPM with
numerous pinwheels, pinwheels undergo pairwise anni-
hilation as previously described for various models of
OPM development and optimization [25,27,35]. The OP
pattern converges to a pinwheel-free stripe pattern,
which is the analytically computed optimal solution in
this parameter regime (Figure 6i). Pinwheel densities
decay toward zero over the time course of the simula-
tions (Figure 6j). Also in this parameter regime, the
mean squared amplitude of the pattern is well-predicted
by Equation (17) for small r (Figure 6k).

In summary, the phase diagram of the EN model with
a circular stimulus ensemble close to threshold is
divided into two regions: (i) for a small interaction
range (large continuity parameter) a square array of pin-
wheels is the optimal dimension-reducing mapping and
(ii) for a larger interaction range (small continuity para-
meter) OSs are the optimal dimension-reducing map-
ping. Both states are stable throughout the entire
parameter range. All other planforms, in particular
quasi-periodic n-ECPs are unstable. At first sight, this
structure of the EN phase diagram may appear rather
counterintuitive. A solution with many pinwheel-defects
is energetically favored over a solution with no defects
in a regime with large continuity parameter where dis-
continuity should be strongly penalized in the EN
energy term. However, a large continuity parameter at
pattern formation threshold inevitably leads to a short
interaction range o compared to the characteristic spa-
cing A (see Equation (24)). In such a regime, the gain in
coverage by representing many orientation stimuli in a
small area spanning the typical interaction range, e.g.,
with a pinwheel, is very high. Our results show that the
gain in coverage by a spatially regular positioning of
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pinwheels outweighs the accompanied loss in continuity
above a certain value of the continuity parameter.

EN dynamics far from pattern formation threshold

Close to pattern formation threshold, we found only two
stable solutions, namely OSs and sPWCs. Neither of the
two exhibits the characteristic aperiodic and pinwheel-
rich organization of experimentally observed OPMs.
Furthermore, the pinwheel densities of both solutions (p
= 0 for OSs and p = 4 for sSPWCs) differ considerably
from experimentally observed values [38] around 3.14.
One way toward more realistic stable stationary states
might be to increase the distance from pattern forma-
tion threshold. In fact, further away from threshold, our
perturbative calculations may fail to correctly predict
optimal solutions of the model due to the increasing
influence of higher order terms in the Volterra series
expansion of the right-hand side in Equation (3).

To asses this possibility, we simulated Equation (3)
with r(x) = 0 and a circular stimulus ensemble for very
large values of the control parameter r. Figure 7 dis-
plays snapshots of such a simulation for » = 0.8 as well
as their pinwheel density time courses for two different
values of o/A. Pinwheel annihilation in the case of
large o/A is less rapid than close to threshold (Figure
7a,b). The OPM nevertheless converges toward a lay-
out with rather low pinwheel density with pinwheel-
free stripe-like domains of different directions joined
by domains with essentially rhombic crystalline pin-
wheel arrangement. The linear zones increase their
size over the time course of the simulations, eventually
leading to stripe-patterns for large simulation times.
For smaller interaction ranges o/A, the OPM layout
rapidly converges toward a crystal-like rhombic
arrangement of pinwheels, however containing several
dislocations (Figure 24a in Appendix 1) [84]. Disloca-
tions are defects of roll or square patterns, where two
rolls or squares merge into one, thus increasing the
local wavelength of the pattern [83,85]. Nevertheless,
for all simulations, the pinwheel density rapidly
reaches a value close to 4 (Figure 7c) and the square
arrangement of pinwheels is readily recognizable. Both
features, the dislocations in the rhombic patterns and
domain walls in the stripe patterns, have been fre-
quently observed in pattern-forming systems far from
threshold [84,85].

In summary, the behavior of the EN dynamics with
circular stimulus ensemble far from pattern formation
threshold agrees very well with our analytical predic-
tions close to threshold. Again, orientation stripes and
square pinwheel crystals are identified as the only sta-
tionary solutions. Aperiodic and pinwheel-rich patterns
which resemble experimentally OPM layouts were not
observed.
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Figure 7 Numerical analysis of the EN dynamics with circular orientation stimulus ensemble and fixed representation of visual space
far from pattern formation threshold. (a) OPMs and their power spectra in a simulation of Equation (3) with r(x) = 0, r = 0.8, 6/A =03 (n =
0.028) and circular orientation stimulus ensemble. Pinwheel density time courses for four different simulations (parameters as in a; gray traces,
individual realizations; black trace, simulation in a; red trace, mean value) (¢, d) OPMs and their power spectra in a simulation of Equation (3)
with r(x) = 0, r = 0.8, 6/A = 0.12 (n = 0.57) and circular orientation stimulus ensemble. (d) Pinwheel density time courses for four different
simulations (parameters as in ¢; gray traces, individual realizations; black trace, simulation in ¢; red trace, mean value).

Taking retinotopic distortions into account

So far, we have examined the optimal solutions of the
EN model for the simplest and most widely used orien-
tation stimulus ensemble. Somewhat unexpected from
previous reports, the optimal states in this case do not
exhibit the irregular structure of experimentally
observed orientation maps. Our treatment however dif-
fers from previous approaches in that the mapping of
visual space so far was assumed to be undistorted and
fixed, i.e., r(x) = 0. We recall that in their seminal publi-
cation, Durbin and Mitchison [21] in particular demon-
strated interesting correlations between the map of
orientation preference and the map of visual space.
These correlations suggest a strong coupling between
the two that may completely alter the model’s dynamics
and optimal solutions.

It is thus essential to clarify whether the behavior of
the EN model observed above changes or persists if we
relax the simplifying assumption of undistorted retino-
topy and allow for retinotopic distortions. By analyzing
the complete EN model dynamics (Equations (3, 4)), we

study the EN model exactly as originally introduced by
Durbin and Mitchison [21].

We again employ the fact that in the vicinity of a
supercritical bifurcation where the nonorientation selec-
tive state becomes unstable, the entire set of nontrivial
fixed points of Equations (3, 4) is determined by the
third-order terms of the Volterra series representation
of the nonlinear operators F?[z, r] and F'[z, r]. The
model symmetries equations (5) to (9) restrict the gen-
eral form of the leading order terms for any model for
the joint optimization of OPM and RM to

9z(x) = Lglz] + Q°[r,z] + Ni[z, 2, 2] + - - (26)

dr(x) Lr] + Q'[z. 2] +--- . (27)

Because the uniform retinotopy is linearly stable, reti-
notopic distortions are exclusively induced by a coupling
of the RM to the OPM via the quadratic vector-valued
operator Q'|[z, z]. These retinotopic distortions will in
turn alter the dynamics of the OPM via the quadratic
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complex-valued operator Q°[r, z]. Close to the point of
pattern onset (r << 1), the timescale of OPM develop-
ment, 7 = 1/r, becomes arbitrarily large and retinotopic
deviations evolve on a much shorter timescale. This
separation of timescales allows for an adiabatic elimina-
tion of the variable r(x), assuming it to always be at the
equilibrium point of Equation (27):

r(x) = —L ' [Q[zZ]]. (28)

We remark that as Ag (k) <O for all finite wave

numbers k >0, the operator L,[r] is indeed invertible
when excluding global translations in the set of possible
perturbations of the trivial fixed point. From Equation
(28), the coupled dynamics of OPM and RM is thus
reduced to a third-order effective dynamics of the OPM:

0200 ~ Lile] - QL [Q 2] 2] +Ni [z, 2.2
Ni[zzz]

= L;[z] + N}[z z z] + N5z, z, Z].

(29)

The nonlinearity N3[z,z,Z] accounts for the coupling
between OPM and RM. Its explicit analytical calculation
for the EN model is rather involved and yields a sum

12
Nilz z,z] = Z N}z, z,7].

j=1

The individual nonlinear operators Ni are nonlinear
convolution-type operators and are presented in the
‘Methods’ section together with a detailed description of
their derivation. Importantly, it turns out that the coeffi-
cients a], are completely independent of the orientation
stimulus ensemble.

The adiabatic elimination of the retinotopic distortions
results in an equation for the OPM (Equation (29))
which has the same structure as Equation (13), the only
difference being an additional cubic nonlinearity. Due to
this similarity, its stationary solutions can be determined
by the same methods as presented for the case of a
fixed retinotopy. Again, via weakly nonlinear analysis we
obtain amplitude equations of the form Equation (15).
The nonlinear coefficients g;; and f;; are determined
from the angle-dependent interaction functions g() and
fla). For the operator N%[z z,Z], these functions are
given by

((1 o2 2e—k302) p2o?(cos a—1) e—k§a2)2
204 (nr + g2¢—2k20?(cos a—l))

fl@) = (gle)+ gla+ 7)),

&) =
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verifying that, N[z, z,z] is independent of the orienta-
tion stimulus ensemble. Besides the interaction range o/
A the continuity parameter 7, € [0, o] for the RM
appears as an additional parameter in the angle-depen-
dent interaction function. Hence, the phase diagram of
the EN model will acquire one additional dimension
when retinotopic distortions are taken into account. We
note, that in the limit 7, — oo, the functions g,() and f,
(o) tend to zero and as expected one recovers the
results presented above for fixed uniform retinotopy.
The functions g.(o) and f,(¢) are depicted in Figure 8
for various interaction ranges o/A and retinotopic conti-
nuity parameters 1,.
Coupled essentially complex n-planforms
In the previous section, we found that by an adiabatic
elimination of the retinotopic distortions in the
dynamics equations (26, 27) the system of partial inte-
gro-differential equations can be reduced to a single
equation for the OPM. In this case, the stationary solu-
tions of the OPM dynamics are again planforms com-
posed of a discrete set of Fourier modes

N
z(x) = ZAjeikfx, (30)
j

with |k| = k.. However, each of these stationary plan-
form OPM solutions induces a specific pattern of reti-
notopic distortions by Equation (28). The joint mapping
{X + r(x), z(x)} is then an approximate stationary solu-
tion of Equations (26, 27) and will be termed coupled
planform solution in the following. In contrast to other
models for the joint mapping of orientation and visual
space (e.g., [31,33,92]), the coupling between the repre-
sentation of visual space and orientation in the EN
model is not induced by model symmetries but a mere
consequence of the joint optimization of OPM and RM
that requires them to be matched to one another.

For planforms given by Equation (30), it is possible to
analytically evaluate Equation (28) and compute the
associated retinotopic distortions r(x). After a somewhat
lengthy calculation (see ‘Methods’ section), one obtains

x) = - Xn: Aj 1 (e—kfaz/z 767%01/2)2 _ e’
Ar(1agl) \o?

k=1,j<k

(31)
#(3(AjAr) cos(Apx) + R(AjAL) sin(Ayx)),

with Ay = k; - ke and A (k) = =k (i, + e ¥ 02).
These retinotopic distortions represent superpositions of
longitudinal modes (see Figure 3b). Hence, coupled
planform stationary solutions of the EN dynamics do
not contain any transversal mode components. Accord-
ing to Equation (31), the pinwheel-free coupled 1-ECP
state has the functional form {r(x) = 0, z(x) = Aye™™)}.
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This means that the OS solution does not induce any
deviations from the perfect retinotopy as shown pre-
viously from symmetry. This is not the case for the
square pinwheel crystal (sPWC)

zgpwe (x) oc sin(kexy ) + isin(kexz),

the second important solution for undistorted retino-
topy. Inserting this ansatz into Equation (31) and

2.2 2
neglecting terms of order O ((e‘kc” ) ) or higher, we

obtain

ropwe(x) o«

e ko’ ke sin(2kcx1)
0205 (2ke) \ kesin(2kexy) )

These retinotopic distortions are a superposition of
one longitudinal mode in x-direction and one in y-
direction, both with doubled wave number ~ 2k.. The
doubled wave number implies that the form of retino-
topic distortions is independent of the topological
charge of the pinwheels. Importantly, the gradient of
the retinotopic mapping R(x) = X + regppwc(x) is
reduced at all pinwheel locations. The coupled sPWC
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is therefore in two ways a high coverage mapping as
expected. First, the representations of cardinal and
oblique stimuli (real and imaginary part of z(x)) are
orthogonal to each other. Second, the regions of high-
est gradient in the orientation map correspond to low
gradient regions in the RM.

In Figure 9, the family of coupled n-ECPs is displayed,
showing simultaneously the distortions of the RM and
the OPM. Retinotopic distortions are generally weaker
for anisotropic n-ECPs and stronger for isotropic n-
ECPs. However, for all stationary solutions the regions
of high gradient in the orientation map coincide with
low gradient regions (the folds of the grid) in the RM.
This is precisely what is generally expected from a
dimension-reducing mapping [21,62,63,91]. In the fol-
lowing section, we will investigate which of these solu-
tions become optimal depending on the two parameters
o/A and 1, that parameterize the model.

The impact of retinotopic distortions

According to our analysis, at criticality, the nontrivial
stable fixed points of the EN dynamics are determined
by the continuity parameter n € (0, 1) for the OPM or,

equivalently, the ratio o/A = ,! \/log(1/n) and the con-

tinuity parameter 1, for the mapping of visual space.
We first tested for the stability of pinwheel-free orienta-
tion stripe (OS) solutions and rPWC solutions of Equa-
tion (15), with coupling matrices g;; and f;; as obtained
from the nonlinearities in Equation (29). The angle
which minimizes the energy U,pwc (Equation (20)) is
not affected by the coupling between retinotopic and
OPM and is thus again a = 7/4. By numerical evalua-
tion of the criteria for intrinsic and extrinsic stability,
we found both, OSs and sPWCs, to be intrinsically and
extrinsically stable for all o/A and 7,.

Next, we tested for the stability of coupled n-ECP
solutions for 2 < n < 20. We found all coupled n-ECP
configurations with # > 2 to be intrinsically unstable for
all /A and n,. Evaluating the energy assigned to
sPWCs and OSs, we identified two different regimes: (i)
for shorter interaction range 6/A the sPWC is the mini-
mal energy state and (ii) for larger interaction range o/
A the optimum is an OS pattern as indicated by the
phase diagram in Figure 10a. The retinotopic continuity
parameter has little influence on the energy of the two
fixed points. The phase border separating stripes from
rhombs runs almost parallel to the 7n,-axis. We numeri-
cally confirmed these analytical predictions by extensive
simulations of Equation (3, 4) (see ‘Methods’ section for
details). Figure 10c shows snapshots of a representative
simulation with small interaction range (r = 0.1, 6/A =
0.1 (n = 0.67), , = n). After the initial symmetry break-
ing phase, the OPM layout rapidly converges toward a
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crystalline array of pinwheels, the predicted optimum in
this parameter regime (Figure 10c). Retinotopic devia-
tions are barely visible. Figure 10b displays pinwheel
density time courses for four such simulations. Note
that in one simulation, the pinwheel density drops to
almost zero. In this simulation, the OP pattern con-
verges to a stripe-like layout. This is in line with the
finding of bistability of rhombs and stripes in all para-
meter regimes. Although the sPWC represents the glo-
bal minimum in the simulated parameter regime, OSs
are also a stable fixed point and, depending on the
initial conditions, may arise as the final state of a frac-
tion of the simulations. In the two simulations with pin-
wheel densities around 3.4, patterns at later simulation
stages consist of different domains of rhombic pinwheel
lattices with o < 7/2.

Figure 10d,e shows the corresponding analysis with
parameters for larger interaction range r = 0.1, o/A =
0.15 (n = 0.41), n, = n. Here after initial pinwheel crea-
tion, pinwheels typically annihilate pairwisely and the
OPM converges to an essentially pinwheel-free stripe
pattern, the predicted optimal solution in this parameter
regime (Figure 10e). Retinotopic deviations are slightly
larger. The behavior of the EN model for the joint opti-
mization of RM and OPM thus appears very similar
compared to the fixed retinotopy case. Perhaps surpris-
ingly, the coupling of both feature maps has little effect
on the stability properties of the fixed points and the
resulting optimal solutions.

As in the previous case, the structure of the phase dia-
gram in Figure 10a appears somewhat counterintuitive.
A high coverage and pinwheel-rich solution is the opti-
mum in a regime with large OPM continuity parameter
where discontinuities in the OPM such as pinwheels
should be strongly penalized. A pinwheel-free solution
with low coverage and high continuity is the optimum
in a regime with small continuity parameter. As
explained above, a large OPM continuity parameter at
pattern formation threshold implies a small interaction
range o/A (see Equation (24)). In such a regime, the
gain in coverage by representing many orientation sti-
muli in a small area spanning the typical interaction
range, e.g., with a pinwheel, is very high. Apparently this
gain in coverage by a regular positioning of pinwheels
outweighs the accompanied loss in continuity for very
large OPM continuity parameters. This counterintuitive
interplay between coverage and continuity thus seems to
be almost independent of the choice of retinotopic con-
tinuity parameters.

The circular orientation stimulus ensemble contains
only stimuli with a fixed and finite ‘orientation energy’
or elongation |s,|. This raises the question of whether
the simple nature of the circular stimulus ensemble
might restrain the dynamics of the EN model. The EN
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Figure 9 Coupled n-ECPs as dimension-reducing solutions of the EN model. Coupled n-ECP are displayed in visual space showing
simultaneously the distortion of the RM and the OPM (o/A = 0.3 (n = 0.028), n, = n, circular stimulus ensemble). The distorted grid represents a
the cortical square array of cells. Each grid intersection is at the receptive field center of the corresponding cell. Preferred stimulus orientations
are color-coded as in Figure 2a. As in Figure 4, n and i enumerate the number of nonzero wave vectors and nonequivalent configurations of
wave vectors with the same n, respectively. The coupled 1-ECP is a pinwheel-free stripe pattern without retinotopic distortion. Only the most
anisotropic and the most isotropic coupled n-ECPs are shown for each n. Note that for all ECPs, high gradients within the orientation mapping
coincide with low gradients of the retinotopic mapping and vice versa. Retinotopic distortions are displayed on a fivefold magnified scale for
visualization purposes.
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with r = 0.1, 6/A = 0.13 (n = 0.51), n, = n (grey traces, individual realizations; red trace, mean value; black trace, realization shown in c). (c) OPMs
(upper row), their power spectra (middle row), and RMs (lower row) obtained in a simulation of Equations (3, 4); parameters as in b. (d) Pinwheel
density time courses for four different simulations of Equations (3, 4) with r = 0.1, /A = 0.3 (n = 0.03), n, = 1 (grey traces, individual realizations;

simulation of Equations (3, 4); parameters as in d.
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dynamics are expected to depend on the characteristics
of the activity patterns evoked by the stimuli and these
will be more diverse and complex with ensembles con-
taining a greater diversity of stimuli. Therefore, we
repeated the above analysis of the EN model for a richer
stimulus ensemble where orientation stimuli are uni-
formly distributed on the disk {s,, |s.| < 2}, a choice
adopted by a subset of previous studies, e.g., [19,25,81].
In particular, this ensemble contains unoriented stimuli
with |s,| = 0. Intuitively, the presence of these unor-
iented stimuli might be expected to change the role of
pinwheels in the optimal OPM layout. Pinwheels’ popu-
lation activity is untuned for orientation. Pinwheel cen-
ters may therefore acquire a key role for the
representation of unoriented stimuli. Nevertheless, we
found the behavior of the EN model when considered
with this richer stimulus ensemble to be virtually indis-
tinguishable from the circular stimulus ensemble. Details

of the derivations, phase diagrams and numerically
obtained solutions are given in Appendix 1.

Are there stimulus ensembles for which realistic,
aperiodic maps are optimal?

So far, we have presented a comprehensive analysis of
optimal dimension-reducing mappings of the EN model
for two widely used orientation stimulus distributions
(previous sections and Appendix 1). In both cases,
optima were either regular crystalline pinwheel lattices
or pinwheel-free orientation stripes. These results might
indicate that the EN model for the joint optimization of
OPM and RM is per se incapable of reproducing the
structure of OPMs as found in the visual cortex. Draw-
ing such a conclusion is suggested in view of the appar-
ent insensitivity of the model’s optima to the choice of
stimulus ensemble. The two stimulus ensembles consid-
ered so far however do not exhaust the infinite space of
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stimulus distributions that are admissible in principle.
From the viewpoint of ‘biological plausibility’ it is cer-
tainly not obvious that one should strive to examine sti-
mulus distributions very different from these, as long as
the guiding hypothesis is that the functional architecture
of the primary visual cortex optimizes the joint repre-
sentation of the classical elementary stimulus features.
If, however, stimulus ensembles were to exist, for which
optimal EN mappings truly resemble the biological
architecture, their characteristics may reveal essential
ingredients of alternative optimization models for visual
cortical architecture.

Adopting this perspective raises the technical question
of whether an unbiased search of the infinite space of
stimulus ensembles only constrained by the model’s
symmetries (Equations (5) to (9)) is possible. To answer
this question, we examined whether the amplitude equa-
tions (15) can be obtained for an arbitrary orientation
stimulus distribution. Fortunately, we found that the
coefficients of the amplitude equations are completely
determined by the finite set of moments of order less
than 5 of the distributions. The approach developed so
far can thus be used to comprehensively examine the
nature of EN optima resulting for any stimulus distribu-
tion with finite fourth-order moment. While such a
study does not completely exhaust the infinite space of
all eligible distributions, it appears to only exclude
ensembles with really exceptional properties. These are
probability distributions with diverging fourth moment,
i.e., ensembles that exhibit a heavy tail of essentially
‘infinite’ orientation energy stimuli.

Since the coupling between OPM and RM did not
have a large impact in the case of the two classical sti-
mulus ensembles, we start the search through the
space of orientation stimulus ensembles by considering
the EN model with fixed retinotopy r(x) = 0. The coef-

ficients a, for the nonlinear operators N}[z,zz] in

Equation (14) for arbitrary stimulus ensembles are
given by

_ (st () 1 (Is:1%) (Is:1") sty L (i)
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R (1 I (X B S (| )
= T 32708 T 8106 T 8wot 5= 7 6dgot = 1670° . G4mo® ( )
(o) SR (3t (shy I (D) 32
47 = 4872610 T 24y208 a8 = 9572410 49 = = r56n3012
sy ) N
@10 = 4872510 T 247208 A= ggp2q0-

The corresponding angle-dependent interaction func-
tions are given by (see ‘Methods’ section)
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Again, without loss of generality, we set (|s,|?) = 2. At
criticality, both functions are parameterized by the conti-
nuity parameter 11 € (0, 1) for the OPM or, equivalently,

the interaction range o /A = ,' \/log(1/n) and the fourth

moment (|s,|*) of the orientation stimulus ensemble. The
fourth moment, is a measure of the peakedness of a sti-
mulus distribution. High values generally indicate a
strongly peaked distribution with a large fraction of non-
oriented stimuli (|s,|* ~ 0), together with a large fraction
of high orientation energy stimuli (|s,|* large).

The dependence of g(ex) on the fourth moment of the
orientation stimulus distribution and flor) suggests that
different stimulus distributions may indeed lead to dif-
ferent optimal dimension-reducing mappings.

The circular stimulus ensemble possesses the minimal
possible fourth moment, with (|s,|*) = ((|s,|*)* = 4. The
fourth moment of the uniform stimulus ensemble is (|
s,|*) = 16/3. The angle-dependent interaction functions
for both ensembles (Equation (25), Figure 22 in Appen-
dix 1) are recovered, when inserting these values into
Equation (33).

To simplify notation in the following, we define

sa.= {Is214) = {1s22)° = (1s214) — 4

as the parameter characterizing an orientation stimu-
lus distribution. This parameter ranges from zero for
the circular stimulus ensemble to infinity for ensembles
with diverging fourth moments. Figure 11 displays the
angle-dependent interaction functions for different
values of o/A and s,. In all parameter regimes, g(c) and
flor) are larger than zero. The amplitude dynamics are
therefore guaranteed to converge to a stable stationary
fixed point and the bifurcation from the nonselective
fixed point in the EN model is predicted to be supercri-
tical in general.

By evaluating the energy assigned to the rPWC and n-
ECPs, we investigated the structure of the two-dimen-
sional phase space of the EN model with an arbitrary
orientation stimulus distribution. First, it is not difficult
to show that the angle o which minimizes the energy
U,pwc (Equation (20)) of an rPWC is o = /4 for all o/
A and s,. Hence, a square lattice of pinwheels (sPWC)
is in all parameter regimes energetically favored over
any other rhombic lattice configuration of pinwheels.
Figure 12 displays the phase diagram of the EN model
with an arbitrary orientation stimulus distribution. For
orientation stimulus distributions with small fourth
moments, optimal mappings consist of either parallel
pinwheel-free stripes or quadratic pinwheel crystals.
These distributions include the circular and the uniform
stimulus ensembles with s, = 0 and s, = 4/3. Above a
certain value of the fourth moment around s, = 6, n-
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Figure 11 Angle-dependent interaction functions for the EN model with fixed retinotopy for different fourth-moment values of the
orientation stimulus distribution and effective interaction-widths. (a, b) g(o) and f(@) for s, = 8 and o/A = 0.1 (a) and o/A = 0.3 (b). (c, d)
gler) and f(ex) for s4 = 20 and o/A = 0.1 (c) and o/A = 0.3 (d). (e, f) gler) and flev) for s, = 100 and /A = 0.1 (e) and o/A = 0.3 (f).
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ECPs with n >2 become optimal mappings. For a short
interaction range o/A, hexagonal pinwheel crystals dom-
inate the phase diagram in a large region of parameter
space. With increasing interaction range, we observe a
sequence of phase transitions by which higher #-ECPs
become optimal. For n >3, these optima are spatially

aperiodic. In all parameter regimes, we found that the
n-ECP with the most anisotropic mode configuration
(Figure 4c, left column) is the energetically favored state
for n >3. Pinwheel densities of these planforms are indi-
cated in Figure 12 and are typically smaller than 2.0.
We note that this is well below experimentally observed
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Figure 12 Stripe-like, crystalline, and quasi-crystalline cortical representations as optimal solutions to the mapping of orientation
preference with fixed uniform retinotopy in the EN model. The graph shows the regions of the s;-6/A-plane in which n-ECPs or sSPWCs
have minimal energy. For n > 3, pinwheel densities of the energetically favored n-ECP configuration are indicated.

\

pinwheel density values [38]. Optimal mappings of We numerically tested these analytical predictions by
orientation preference for finite fourth moment in the simulations of Equation (3) (r(x) = 0) with two addi-
EN model are thus either orientation stripes, periodic  tional stimulus ensembles with s, = 6 and s, = 8 (see
arrays of pinwheels (hexagonal, square), or aperiodic = ‘Methods’ section). Figure 13a shows snapshots of a
pinwheel arrangements with low pinwheel density. simulation with (» = 0.1, 6/A = 0.2 (1 = 0.2)) and s, = 6
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Figure 13 Approaching crystalline n-ECP optima in the EN model with fixed renotopy. (a) OPMs (upper row) and their power spectra
(lower row) in a simulation of Equation (3) with r(x) = 0, r = 0.1, 6/A = 0.2 and s, = 6 (see also Additional file 3). The predicted optimum is the
2-ECP (black frame). (b) Pinwheel density time courses for four different simulations (parameters as in a; gray traces, individual realizations; black
trace, simulation in a; red trace, mean value). () OPMs (upper row) and their power spectra (lower row) in a simulation of Equation (3) with r(x)
=0,r=0.1,0/A =03 and s, = 8 (see also Additional file 4). The predicted optimum is the anisotropic 3-ECP (black frame). (d) Pinwheel density
time courses for four different simulations (parameters as in ¢; gray traces, individual realizations; black trace, simulation in ¢; red trace, mean
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(see also Additional file 3). After the initial phase of pat-
tern emergence, the OPM layout converges toward an
arrangement of fractured stripes which resembles the 2-
ECP state (Figure 13a, most right), the optimum pre-
dicted in this regime. In the power spectra, two distinct
peaks of the active modes are clearly visible in the final
stages of the simulation (Figure 13a, lower row). The 2-
ECP state is exotic in the sense that it is the only n-ECP
containing line defects and thus the pinwheel density is
not a well-defined quantity. This explains the pro-
nounced numerical variability in the measured pinwheel
densities in simulations during the convergence toward
a 2-ECP state (Figure 13b).

Figure 13c shows snapshots of a simulation with (r =
0.1, o/A = 0.2 (n = 0.2)) and s, = 8, Gaussian stimulus
ensemble) (see also Additional file 4). After the initial
phase of pattern emergence, the OPM layout converges
toward a regular hexagonal arrangement of pinwheels
which resembles the anisotropic 3-ECP (Figure 13c, far
right), the optimum predicted in this regime. In the
power spectra, three distinct peaks forming an angle of
60 degrees are clearly visible in the later stages of the

simulation (Figure 13c, lower row). Pinwheel densities in
the simulations consistently approach the theoretically
predicted value of 2 cos(z/6) = 1.73 (Figure 13d).
Permutation symmetric limit

In the previous section, we uncovered a parameter
regime for the EN model in which optimal solutions are
spatially aperiodic. This can be viewed as a first step
toward realistic optimal solutions. In the identified
regime, however, among the family of #n-ECPs only
those with pinwheel densities well below experimentally
observed values [38] are energetically favored (see Figure
12). In this respect, the repertoire of aperiodic optima of
the EN model differs from previously considered
abstract variational models for OPM development
[35,36,38,39]. In these models, an energetic degeneracy
of aperiodic states with low and high pinwheel densities
has been found which leads to a pinwheel statistics of
the repertoire of optimal solutions that quantitatively
reproduces experimental observations [38,93]. What is
the reason for this difference between the two models?
In [35], the energetic degeneracy of aperiodic states with
low and high pinwheel densities was derived from a so-
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called permutation symmetry

N3[u, v, w] = N3[w, u,v], (34)

of the cubic nonlinearities of the model. It can be
easily seen, that the cubic nonlinearities obtained in the
third order expansion of the EN model do not exhibit
this permutation symmetry (see ‘Methods’ section). As
shown by Reichl [94], the absence of permutation sym-
metry can lead to a selection of a subrange of pinwheel
densities in the repertoire of optima of OPM models.
Depending on the degree of permutation symmetry
breaking, the family of optima of such models, albeit
encompassing aperiodic OPM layouts, may consist of
layouts with either unrealistically low or high pinwheel
densities. Furthermore, for very strong permutation
symmetry breaking, stationary solutions from solution
classes other than the n-ECPs and rPWCs with low or
high pinwheel densities may become optima of models
for OPM development. In order to determine a regime
in which the EN model optima quantitatively resemble
experimentally observed OPM layouts, it is therefore
important to quantify the degree of permutation sym-
metry breaking in the EN model and to examine
whether permutation symmetric limits exist. As shown
in the ‘Methods’ section, any cubic nonlinearity
N5z z,z] that obeys Equation (34) has a corresponding
angle-dependent interaction function g(e) which is -
periodic. Therefore, we examine the degree of permuta-
tion symmetry breaking in the EN model by comparing
the angle-dependent interaction function g(a) of its
third order expansion (see Equation 33 and Figure 11)
to the m-periodic function g,,,(a) = 1/2 (g(a) + gla +
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m)). This ‘permutation-symmetrized’ part of the angle-
dependent interaction function of the EN model for
general orientation stimulus ensembles reads

2(ls:I* 2
gm(@) = ('SG‘ >e’2’*f” sinh*(1/2k20? cos @)

(35)

2!
- (‘252‘4)[2*1?&7‘ ((cosh (2k20 cos @) — 2 cosh (k202 cos ar)) — 26K — ew{"l)

1
g2 (1 +e72 cosh(2k20? cosa)) .
o

A comparison between g,,,,() and g(«) is depicted in
Figure 14a-d. It shows that essentially insensitive to the
interaction range o/A, at large values of the fourth
moment original and permutation symmetrized angle-
dependent interaction functions converge. We quanti-
fied the degree of permutation symmetry breaking with
the parameter

_ 18—l
I 82

This parameter is zero in the case of a permutation
symmetric cubic nonlinearity. In the case of a g-function
completely antisymmetric around o = /2, the para-
meter is either plus or minus one, depending on
whether the maximum of g,,, is at zero or 7. If 4 is
smaller than zero, low pinwheel densities are expected
to be energetically favored and vice versa. The values of
d in parameter space is depicted in Figure 14e. It is
smaller than zero in the entire phase space, implying a
tendency for low pinwheel density optimal states, in
agreement with the phase diagram in Figure 12. Permu-
tation symmetry breaking is largest for o/A around 0.25
and small fourth moment values of the orientation sti-
mulus distribution. It decays to zero for large fourth

sgn(g(0) — g(m)). (36)
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Figure 14 Quantifying permutation symmetry breaking in the EN model. (a-d) g(e) (red traces) and the ‘permutation symmetrized’ function
Gom(0) = 1/2(gler) + gl + 1)) (blue traces, see Equation (35)) for 6/A = 0.1 and 0.3 and s, = 6 and 100. (e) Permutation symmetry parameter d

(Equation 36) in the EN model with fixed retinotopy. Permutation symmetry breaking is largest for 6/A = 025 and small s,. In the limit s, — oo,

permutation symmetry is restored.
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moments proportionally to 1/s, as can be seen by insert-
ing Equations (33) and (35) into Equation (36). In the
infinite fourth moment limit s, — o, the cubic nonli-
nearities of the third-order expansion of the EN model
become permutation symmetric.

In this case, the EN model is parameterized by only
one parameter, the effective intracortical interaction
range o/A and we obtain a rather simple phase diagram
(Figure 15). Optimal solutions are #-ECPs for increasing
o/A and we observe a sequence of phase transitions
toward a higher number of active modes and therefore
more complex spatially aperiodic OPM layouts. Impor-
tantly, for a subregion in the phase diagram with given
number of active modes, all possible #-ECP mode con-
figurations are energetically degenerate. It is precisely
this degeneracy that has been previously shown to result
in a pinwheel statistics of the repertoire of aperiodic
optima which quantitatively agrees with experimental
observations [38]. Therefore, our unbiased search in fact
identified a regime, namely a very large effective interac-
tion range and infinite fourth moment of the orientation
stimulus ensemble, in which the EN model formally pre-
dicts which quantitatively reproduce the experimentally
observed V1 architecture.

Unexpectedly, however, this regime coincides with the
limit of applicability of our approach. Permutation sym-
metry is exactly obtained by approaching stimulus distri-
bution with diverging fourth moment for which the
amplitude equations may become meaningless. We
would generally expect that the EN for very large but
finite fourth moment can closely resemble a permuta-
tion symmetric model. However, to consolidate the
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relevance of this regime, it appears crucial to establish
the robustness of the limiting behavior to inclusion of
retinotopic distortions.

Optimal solutions of the EN model with variable
retinotopy and arbitrary orientation stimulus ensembles
In the EN model for the joint mapping of visual space
and orientation preferences, the angle-dependent inter-
action functions depend on four parameters: 7, o, the
fourth moment (|s,|*)of the stimulus ensemble and 7,.
By setting o = 0*(17), we are left with three free para-
meters at criticality. Therefore, a three-dimensional
phase diagram now completely describes pattern selec-
tion in the EN model. For better visualization, in Figure
16, we show representative cross sections through this
three-dimensional parameter space for fixed n,. First, we
note the strong similarity between the phase diagram
for fixed retinotopy (Figure 12) and the cross sections
through the phase diagrams for the joint mappings
shown in Figure 16. This expresses the fact that retino-
topic mapping and OPM are only weakly coupled or
mathematically, g,(0) < g(c) in all parameter regimes
(see Appendix 2). Again, for distributions with small
fourth moment, optimal mappings consist of either pin-
wheel-free orientation stripes or sSPWCs. Above a cer-
tain fourth moment value around s, = 6, higher coupled
n-ECPs are optimal. For small interaction range o/A,
hexagonal pinwheel crystals (coupled 3-ECPs) represent
optimal mappings in a large fraction of parameter space.
With increasing /A, we observe a sequence of phase
transitions by which higher n-ECPs become optimal.
Anisotropic planforms at the lower end of the spectrum

N 10" 107°
< | |

107°

107 10
| |

Figure 15 Phase diagram of the EN model with fixed retinotopy in the permutation symmetric limit s; — . The graphs show the
regions on the o/A-axis (lower axis) and the corresponding n-axis (upper axis), where n-ECPs or sPWCs have minimal energy. High n-ECPs (n 2
10) exhibit universal pinwheel statistics. Note however the extremely small n-values for large o/A.
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of pinwheel densities are always energetically favored
over high pinwheel density layouts. The only difference
between the cross sections is that the region covered by
sPWCs increases for decreasing 7,. The phase diagram
for large 17, = 10 is virtually indistinguishable from the
phase diagram in Figure 16.

Optimal mappings of orientation preference are thus
either orientation stripes, periodic arrays of pinwheels
(hexagonal, quadratic) or quasi-periodic pinwheel arrays
with low pinwheel density. Retinotopic distortions lead
to lower gradients of the retinotopic mapping at high
gradient regions of the OPM. This is in line with some
of the experimental evidence [55,95] but contradicts
others [96].

Most importantly, we note that the results on permu-
tation symmetry breaking in the fixed retinotopy case
are not altered by allowing for retinotopic distortions.
Since g,(cx) does not depend on the fourth moment of
the orientation stimulus distribution, non-permutation
symmetric terms decay as 1/s, for large s,.

Hence, in the limit s4 — oo, permutation symmetry is
restored and we recover the phase diagram in Figure
15 also for the EN model with variable retinotopy
independent of 7,. As the energy contribution of reti-
notopic deviations r(x) becomes negligible in the infi-
nite fourth moment limit, the optima are then simply
the corresponding coupled n-ECPs and these states are
energetically degenerate for fixed n. For very large
effective interaction range and infinite fourth moment
of the orientation stimulus ensemble, the EN model
with variable retinotopy is able to quantitatively repro-
duce the experimentally observed pinwheel statistics in
OPMs. It furthermore predicts reduced gradients of
the visual space mapping at high gradient regions of
the OPM.

Finite stimulus samples and discrete stimulus ensembles

Our reexamination of the EN model for the joint opti-
mization of position and orientation selectivity has been
so far carried out without addressing the apparently fun-
damental discrepancy between our results and the large
majority of previous reports. Since the seminal publica-
tion of Durbin and Mitchison [21], numerous studies
have used the EN model to simulate the development of
visual cortical maps or to examine the structure of opti-
mal mappings by  numerical  simulation
[58,62-65,79,97,98]. These studies have either used the
circular or the uniform orientation stimulus ensemble
for which, to the best of our knowledge, the only two
nontrivial stationary solutions are square pinwheel crys-
tals or orientation stripes. Furthermore, we found that
the gradient descent dynamics seems to readily converge
to the respective minima of the EN free energy. This
indicates that other local minima and more complex
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intrinsically aperiodic states are not dominant in this
model. In fact, we found that all aperiodic stationary
solutions we could perturbative calculate analytically are
unstable and thus represent hyperbolic saddle points
and not local minima. As these stable solutions barely
resemble experimentally observed OPMs, it is not
obvious how the EN model in all of these studies could
appear as a model well suited to describe the complex
layout of real cortical orientation maps. Prior studies
however often used computational methods different
from our fixed parameter steepest descent simulations.

Two alternative approaches have been used predomi-
nantly to study dimension reducing mappings for corti-
cal representations. These methods have been applied to
both the EN model and the other widely used dimen-
sion reduction model, the self-organizing feature map
(SOFM), originally introduced by Kohonen [59]. The
simplest way to compute mappings from a high dimen-
sional feature space onto the two-dimensional model
cortex is by iterating the following procedure for a large
number of randomly chosen stimuli (e.g.,
[56,57,66-68,99,100]): (i) Stimuli are chosen one at a
time randomly from the complete feature space. (ii) The
activation function for a particular stimulus is com-
puted. In the case of the EN model, this activation func-
tion can acquire a rather complex form with multiple
peaks (see ‘Discussion’ section). In the case of an
SOFM, this activation function is a 2D-Gaussian. (iii)
The preferred features of the cortical grid points are
updated according to a discretized version of Equations
(3, 4) or the corresponding equations for the SOFM
model. Typically, this procedure is repeated on the
order of 10° times. The resulting layout is then assumed
to at least approximately solve the dimension reduction
problem. In many studies, small stimulus sets have been
chosen presumably for computational efficiency and not
assuming specifically that the cortex is optimized for a
discrete finite set of stimuli. In [21] for instance, a set of
216 stimuli was used, that was likely already at the limit
of computing power available at this time.

In a more refined approach, the EN model as well as
Kohonen’s SOFM model have been trained with a finite
set of stimuli (typically with on the order of 10° to 10%)
and the final layout of the model map has been obtained
by deterministic annealing [101], i.e., by gradually redu-
cing the numerical value of ¢ in a numerical minimiza-
tion procedure for the energy functional F at each
value of o (see e.g., [21,64,65,79] and see ‘Methods’ sec-
tion). In such simulations, often nonperiodic boundary
conditions were used. One might suspect in particular
the second approach to converge to OPM layouts
deviating from our results. It is conceivable in principle,
that deterministic annealing might track stationary solu-
tions across parameter space that are systematically
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Figure 16 Stripe-like, crystalline, and quasi-crystalline cortical representations as optimal solutions to the joint mapping problem of
visual space and orientation preference in the EN. (a-d) Phase diagrams for the joint mapping of visual space and orientation preference in
the EN near criticality for n, = 0 (@), n, = 0.01 (b), n, = 0.1 (c), and 1, = 10 (d). The graphs show the regions of the s;-6/A-plane in which
coupled n-ECPs or sPWCs have minimal energy. For n > 3, pinwheel densities of the energetically favored n-ECP configuration are indicated.
Note the strong similarity between the phase diagrams and the phase diagrams in the fixed retinotopy case (Figure 12).

missed by both, our continuum limit analytical calcula-
tions as well as our descent numerical simulations.

To assess the potential biases of the different
approaches, we implemented (i) finite stimulus sampling

in our gradient descent simulations and (ii) studied the
results of deterministic annealing simulations varying
both the size of the stimulus set as well as the type of
boundary conditions applied.
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We simulated Equations (3, 4) with finite sets of sti-
muli of different sizes (see ‘Methods’ section), drawn
from the circular stimulus ensemble. Following [21,25],
N was set to a small value (n = 0.025) such that the
optimal configuration for the joint mapping of visual
space and orientation preference is the coupled 1-ECP
(see Figure 10), i.e., a pattern of parallel orientation
stripes without any retinotopic distortion (see Figure 9).
Figure 17 displays representative simulations for stimu-
lus sets of size N = 216 (as used in [21]) (a), N = 10°
(b), N = 10° (c) stimuli. Simulation time ¢ is measured
in units of the intrinsic time scale 7 (see ‘Methods’ sec-
tion). For N = 216 stimuli, RM and OPM quickly reach
an apparently stationary configuration with a large num-
ber of pinwheels at around ¢ = 20z. Power is distributed
roughly isotropically around the origin of Fourier space
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(k = 0). The stable OPM lacks a typical length scale
and, expressing the same fact, the power spectrum lacks
the characteristic ring of enhanced Fourier amplitude.
Retinotopic distortions are fairly pronounced. Both
obtained maps resemble the configurations reported in
[21].

For N = 10° stimuli, we find that OPMs exhibit a
characteristic scale (see dark shaded ring in the power
spectrum) and a dynamic rearrangement of the maps
persists at least until £ = 200z. Stripe-like OP domains
are rapidly generated via pairwise pinwheel annihilation
for ¢ >107. Retinotopic distortions are fairly weak. For N
= 10° stimuli, again OPMs exhibit a characteristic scale
(see dark shaded ring in the power spectrum) and the
map dynamics persists beyond ¢ = 2007. A larger frac-
tion of the pinwheels annihilate pairwisely compared to

216 stimuli

106 stimuli

(2]

t=10t

t =300t

— N -

10° stimuli

106 stimuli

% : 200 300
time [1]

Figure 17 Development of OPM and retinotopic distortions in EN simulations with fixed stimulus sets of different sizes. (a) OPMs (left),
their power spectra (middle) and RMs (right) for t = 10z (upper row) and t = 300z (lower row) obtained in simulations with fixed stimulus set (n
= 0028, 6/A = 03, s4 = 4/3, 216 stimuli). (b) 10° stimuli (all other parameters as in a). (c) 10° stimuli (all other parameters as in a). Large stripe-
like OP domains are generated via pairwise pinwheel annihilation for large simulation times. Retinotopic distortions are fairly weak.(d) Pinwheel
density time course for EN simulations with fixed stimulus sets of different sizes, including the simulations from a to ¢ (red, green, blue traces
216, 10°, 10° stimuli) (all other parameters as in a). Dashed lines represent individual simulations, solid lines an average over four simulations.
Note, that the pinwheel density rapidly decays below 2.0 in both cases, and in particular for 10° stimuli, the OPM pattern acquires large stripe-
like regions.
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N = 10° stimuli, leading progressively to a pattern with
large stripe-like domains. Retinotopic distortions are
fairly weak. For both cases with massive stimulus sam-
pling (N = 10°, N = 10°), the pinwheel density rapidly
drops below the range observed in tree shrews, galagos
and ferrets and than further decreases during subse-
quent map rearrangement. In summary, the more sti-
muli are chosen for the optimization procedure, the less
pinwheels are preserved in the pattern of orientation
preference and the more the resulting map resembles
the analytically obtained optimal solution. Deterministic
annealing approaches which change parameters of the
energy functional during the computational minimiza-
tion process differ more fundamentally from our gradi-
ent descent simulations than the iterative schemes used
with fixed parameters. Studies using deterministic
annealing in addition frequently used nonperiodic
boundary conditions (e.g. [64,65,79]). To study all
potential sources of deviating results, we implemented
deterministic annealing for the EN energy function (see
‘Methods’ section, Equation (46)) for periodic bound-
aries, nonperiodic boundary conditions as well as ran-
dom and grid-like finite stimulus ensembles (see
‘Methods’ section). We closely follow the refined meth-
ods used in [64,65,79] and performed deterministic
annealing simulations for the EN model with retinotopic
distortions and stimuli drawn from the circular stimulus
ensemble.

Figures 18a and 19a display representative simulations
for random stimulus sets of size N = 103, N = 10* and
N = 10° for periodic boundary conditions (Figures 18a)
and nonperiodic boundary conditions (Figures 19a).
Furthermore depicted are the pinwheel densities of sta-
tionary solutions as well as their energies, relative to the
energy of a pinwheel-free stripe solution (see ‘Methods’
section) for different annealing rates ¢ (Figures 18b-d
and 19b-d). Figures 18e-g and 19e-g additionally show
the statistics of nearest neighbor (NN) pinwheel dis-
tances as well as the SD of the pinwheel densities for
randomly selected subregions in the OPM as introduced
in [38], averaged over four simulations with N = 10°. To
facilitate comparison, we superimposed fits to the
experimentally observed statistics [38] for orientation
maps in tree shrews, ferrets and galagos.

When annealing with periodic boundary conditions,
the maps found with deterministic annealing essen-
tially resemble our gradient descent dynamics simula-
tions. The larger the set of stimuli, the more stripe-like
are the OPMs obtained (Figure 18a,b). Furthermore,
the more carefully we annealed, the lower the pinwheel
density of the obtained layouts (Figure 18c). For N =
10°, the pinwheel density averaged over four simula-
tions with annealing rate 0.999 was p = 2.04 As
expected, the energy of the final layouts decreased
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with slower annealing rates (Figure 18d). However,
when starting from random initial conditions, the
energy of the final layouts found was always higher
compared to the energy of a pinwheel-free stripe solu-
tion (see ‘Methods’ section for details), which is the
predicted optimum for the circular stimulus ensemble.
NN-pinwheel distance histograms are concentrated
around half the typical column spacing and in particu-
lar pinwheel pairs with short distances are lacking
completely (Figure 18e,f). For nonperiodic boundary
conditions and random stimuli, we found that retino-
topic distortions are more pronounced than for peri-
odic boundary conditions. They however decreased
with increasing number of stimuli. For large the stimu-
lus numbers, we observed stripe-like orientation pre-
ference domains which are interspersed with lattice-
like pinwheel arrangements (see Figure 19c¢), lower
row, upper left corner of the OPM). For N = 10°, the
pinwheel density averaged over four simulations with
annealing rate 0.999 was p = 2.71.

Similarly to the results for periodic boundary condi-
tions, short distance pinwheel pairs occur less frequently
than in the experimentally observed maps, indicating an
increased regularity in the pinwheel distances compared
to real OPMs (Figure 19e,f). This regularity is further
indicated by a smaller exponent of the SD compared to
the Poisson process (Figure 19g). The perfect stripe-like
solution is not the optimum for nonperiodic boundaries.
The energy of the map layouts found with very slow
annealing rates is slightly lower than the energy of the
pinwheel-free OPM layout (Figure 19d). We note that
the layout of the OPM at the boundaries does not differ
substantially from the layout inside the simulated
domain, suggesting that boundary effects affect the
entire simulated domain for the relatively small region
treated. Finally, we performed simulations with grid-like
stimulus patterns as e.g., used in [64,65]. These simula-
tions displayed a strong tendency toward rhombic pin-
wheel arrangements, i.e., the second stable stationary
solution found for the circular stimulus ensemble. We
refer to Appendix 3 for further details. In summary, our
results for the discrete EN model with deterministic
annealing largely agree with the analytical results. Irre-
spective of the numerical methodology, the emerging
map structure for large numbers of stimuli is confined
to the states predicted by our analytical treatment of the
continuum formulation of the EN. This behavior is
expected because the energies underlying the determi-
nistic annealing and the steepest descent simulations are
mathematically equivalent (see ‘Methods’ section). In
any kind of deterministic annealing simulation we
tested, resulting patterns were patchworks of the two
fundamental stable solutions identified by the analytical
treatment: pinwheel free stripes and square lattices of
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Figure 18 The EN model with periodic boundary conditions, solved with deterministic annealing. (@) OPMs (left) and RMs (right) for N =
10° (upper row), N = 10* (middle row) and N = 10° (lower row) random stimuli and periodic boundary conditions (annealing rate y = 0.999, see
‘Methods' section). B is the continuity parameter in the conventional definition of the EN model (see ‘Methods’ section, Equation 46) and is
scaled, such that a comparable number of columns is emerging in the simulations for each size of the stimulus set. (b) Pinwheel densities of EN
solutions for different numbers of stimuli, ¥ = 0.999. (c) Pinwheel densities of EN solutions for 10° stimuli and different annealing rates. (d)
Energies of solutions for 10° stimuli, relative to the energy of a pinwheel-free stripe solution (see ‘Methods’ section) for different annealing rates.
(b-d) Crosses mark individual simulations, red line indicates average values. (e, f) Statistics of nearest neighbor pinwheel distances for pinwheels
of (e) arbitrary and (f) opposite and equal charge for 10° random stimuli and periodic boundary conditions, averaged over four simulations (red

curves). Black curves represent fits to the experimental data from [38]. (g) Standard deviations (SD) of pinwheel densities estimated from
randomly selected regions in the OPM. Black dashed curve indicates SD for a two-dimensional Poisson process of equal density.

pinwheels. Such patchworks are spatially more compli-
cated than perfect stripes or crystals. Nevertheless, they
qualitatively differ in numerous respects from the
experimentally observed spatial arrangements (see Fig-
ures 18, 19, and 28 in Appendix 3). How the fundamen-
tal stable solutions are stitched together somewhat
differs between the different kinds of simulations. For
instance, using a grid-like stimulus ensemble with non-
periodic boundary conditions apparently energetically
favors the rPWC compared to the pinwheel-free stripe
regions (see Figure 27 in Appendix 3). In summary,
while some of the patterns obtained by deterministic

annealing might be called ‘good-looking’ maps, all of
them substantially deviate from the characteristics of
experimentally observed pinwheel arrangements.

We conclude that the differences between our results
and those of previous studies are most likely due to the
small finite stimulus samples used largely for reasons of
computational tractability. Deterministic annealing using
stimulus samples that fill the feature space converges to
the same types of patterns found by perturbation theory.
We further conclude that our methods do not systema-
tically miss biologically relevant local minima of the
classical EN energy function.
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Discussion

Summary

In this study, we examined the solutions of what is per-
haps the most prominent optimization model for the
spatial layout of orientation and RMs in the primary
visual cortex, the EN model. We presented an analytical
framework that enables us to derive closed-form expres-
sions for hyperbolic fixed points, local and global
minima, and to analyze their stability properties for arbi-
trary optimization models for the spatial layout of
OPMs and RMs. Using this framework, we systemati-
cally reexamined previously used instantiations of the
EN model, dissecting the impact of stimulus ensembles
and of interactions between the two maps on optimal
map layouts. To our surprise, the analysis yielded vir-
tually identical results for all of these model instantia-
tions that substantially deviate from previous numerical
reports. Pinwheel-free orientation stripes and crystalline

square lattices of pinwheels are the only optimal dimen-
sion-reducing OPM layouts of the EN model. Both
states are generally stable but exchange their roles as
optima and local minima at a phase border. Numerical
simulations of the EN gradient descent dynamics as well
as simulations utilizing deterministic annealing con-
firmed our analytical results. For both processes, the
initially spatially irregular layouts rapidly decayed into a
patchwork of stripe-like or crystal-like local regions that
then became globally more coherent on longer time-
scales. Pinwheel-free solutions were approached after an
initial phase of pattern emergence by pairwise pinwheel
annihilation. Crystalline configurations were reached by
the generation of additional pinwheels and pinwheel
annihilation together with a coordinated rearrangement
toward a square lattice. These results indicate that lay-
outs which represent an optimal compromise of cover-
age and continuity for retinotopy and orientation do not
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per se reproduce the spatially aperiodic and complex
structure of orientation maps in the visual cortex.

To clarify whether the EN model is in principle cap-
able of reproducing the biological observations, we per-
formed an unbiased comprehensive inspection of EN
optima for arbitrary stimulus distributions possessing
finite fourth moments. This analysis identified two key
parameters determining pattern selection: (i) the effec-
tive intracortical interaction range and (ii) the fourth
moment of the orientation stimulus distribution. We
derived complete phase diagrams summarizing pattern
selection in the EN model for fixed as well as variable
retinotopy. Small interaction ranges together with low
fourth moment values lead to either pinwheel-free
orientation stripes, rhombic or hexagonal crystalline
orientation map layouts as optimal states. Large interac-
tion ranges together with orientation stimulus distribu-
tions with high fourth moment values lead to the
stabilization of irregular aperiodic OPM layouts. These
solutions belong to a class of solutions previously called
n-ECPs. This solution class encompasses a large variety
of OPM layouts and has been identified as optimal solu-
tions of abstract variational models of OPM develop-
ment [35]. We showed that in the EN model due to a
lack of a so-called permutation symmetry, among this
family of solutions, states with low pinwheel densities
are selected as global minima. In the extreme and pre-
viously unexplored parameter regime of very large effec-
tive interaction ranges and stimulus ensemble
distributions with infinite fourth moment, permutation
symmetry is restored and spatially aperiodic OPM lay-
outs with higher pinwheel density are included in the
repertoire of optimal solutions. Only in this limit, the
repertoire of optima reproduces the recently described
species-insensitive OPM design [38] and quantitatively
matches experimentally observed orientation map lay-
outs. None of these findings depend on whether the EN
model is considered with variable or fixed retinotopy.

Comparison to previous studies

It is an important and long-standing question, whether
the structure of cortical maps of variables such as stimu-
lus orientation or receptive field position can be
explained by a simple general principle. The concept of
dimension reduction is a prominent candidate for such
a principle (see e.g., [58,102] for reviews) and the quali-
tative agreement between experimental data and pre-
vious numerical results from dimension reduction
models [21,42,60,62-66,68,98,102-104] can be viewed as
evidence in favor of the dimension reduction hypothesis.
Yet comprehensive analytical investigations of dimen-
sion reduction problems and in particular the determi-
nation of their optimal and nearly optimal solutions
have been impeded by the mathematical complexity of
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these problems. For the EN algorithm applied to the
TSP, previous analytical results established the unselec-
tive fixed point above the first bifurcation point as well
as the parameters at which this solution becomes
unstable [105]. Subsequent work extended these results
to the EN model for cortical map formation. The peri-
odicity of solutions depending on the model parameters
has been obtained by computing the eigenvalues of the
Hessian matrix of the energy function [63,97,106]. Hoft-
simmer et al. [72] confirmed these results, and com-
puted the periodicity of the emerging patterns in the
continuous EN model formulation by linear stability
analysis of the EN gradient descent dynamics as used in
this study. Our results extend these findings and for the
first time provide analytical expressions for the precise
layout of optimal and nearly optimal dimension-redu-
cing maps.

In the light of the qualitative agreement between
experimental data and numerical solutions of the EN
model previously described, it is perhaps our most sur-
prising result that the model’s optimal dimension-redu-
cing maps are regular periodic crystalline structures or
pinwheel-free stripe patterns in large regions of para-
meter space. In particular, the species-insensitive pin-
wheel statistics observed experimentally [38] are not
exhibited by optimal solutions of the classical EN in any
of the previously considered parameter regimes.

Our comparison of different numerical approaches
indicates that the differences to previous studies are
mainly attributable to differences in the sampling of the
stimulus manifold in the numerical optimization proce-
dures. In their seminal publication, Durbin and Mitchi-
son used sets of 216 stimuli from the circular stimulus
ensemble and applied a Gauss-Seidel procedure to
obtain stationary configurations [21]. A similar proce-
dure was used in [104]. Quite frequently, the number of
stimuli used for optimization is of the same order of
magnitude as the number of model neurons or centroids
in feature space. This provides a relatively sparse sam-
pling of the stimulus manifold [63-65]. Finite stimulus
sampling effects are expected to worsen when feature
spaces of higher dimension are considered.

The choice of small stimulus sets in previous dimen-
sion reduction studies was imposed mainly by the lim-
itations of computing power. Using a parallelized
implementation of the Cholesky method for determinis-
tic annealing [62-65] on a multicore architecture with 2
TB working memory, we explored the dependence of
the obtained near optimal solutions on the sampling of
the feature space manifold over two orders of magni-
tude. We find that, the more stimuli are sampled, the
closer the numerically obtained configurations resemble
our analytical predictions. Our results on the classical
EN model with deterministic annealing suggest that in
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the limit of large stimulus numbers, one would perfectly
recover our analytical results both for periodic condi-
tions or nonperiodic boundary conditions with realistic
system sizes. This dense stimulus sampling limit is also
readily visible in our reproduction of the original Durbin
and Mitchison sampling and the modification of the
predicted map structure with stimulus number (Figure
17). The finding that computational limitations pre-
vented Durbin and Mitchison from obtaining the genu-
ine predictions of their dimension reduction model
should not be viewed as diminishing the importance of
their contribution. The dimension reduction approach
has played a unique and extremely productive role in
guiding the conceptualization of cortical functional
architecture. It has established an abstract view on corti-
cal representations without which most of our current
theoretical knowledge about candidate theories for corti-
cal architectures could not have been obtained.

Our results about optimal states of the EN for the cir-
cular and uniform stimulus ensembles however agree
with some prior work. In [25], the gradient descent
dynamics of the EN model was used as a model for the
emergence and refinement of cortical maps during
development. Simulated visual stimulus features
included retinotopy, orientation and eye dominance.
The numerical procedures were similar to the one
developed in this study. Parameters were chosen such
that s, = 4/3 and o/A = 0.366. This study found that an
initially large number of pinwheels decayed via pairwise
annihilation of pinwheels with opposite topological
charge. Our analysis predicts a stripe-like OP pattern as
optimal solution in this regime, both in the case of a
fixed uniform retinotopy as well as with variable retino-
topy. In our simulations, this state is reached after an
initial phase of symmetry breaking with the generation
of numerous pinwheels via pairwise pinwheel annihila-
tion. Our analytical and numerical results thus confirm,
explain, and generalize these previous findings.

The previous results also indicated that the inclusion
of eye dominance in the EN model slightly slows down
but does not stop the pinwheel annihilation process (see
[25], Figure 3). This raises the possibility that the main
features of our analysis of optimal solutions for the EN
model may persist when additional feature dimensions
are taken into account. Reichl et al. in fact observed that
models with interacting OPM and OD maps (ODMs)
exhibit a transition from pinwheel-free stripes to peri-
odic pinwheel crystals similar to the transitions found in
the EN [37] and demonstrated that this transition is a
general feature of models with interacting OPM and
ODMs [107]. A rigorous characterization of map struc-
tures predicted by the simultaneous optimization of
multiple periodic feature representations such as orien-
tation preference and OD constitutes an important goal
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for future studies. The recent study by Reichl et al. [37]
suggests that this issue can successfully be approached
using concepts from the nonlinear dynamics of pattern
formation. Finally, one recent study used the continuous
formulation of the EN model to investigate the impact
of postnatal cortical growth on the formation of OD
columns in cat visual cortex [69]. Consistent with our
results, this study also observed perfectly regular stripe-
like patterns as stationary states in gradient descent
simulations. The dynamics of the convergence of the
ODMs toward the stripes was modified by including
cortical growth into the model. However, as soon as
growth terminated, simulated ODM layouts readily con-
verged toward regular stripes. How cortical growth
interacts with the formation of orientation columns is
currently not understood and represents a further inter-
esting topic for future studies.

Geometric relationship between retinotopic distortions
and OPMs

Experimental results on the geometric relationships
between the map of visual space and the map of orien-
tation preference are ambiguous. Optical imaging
experiments in cat V1 suggested a systematic covaria-
tion of inhomogeneities in the RM with singularities in
the pattern of orientation columns in optical imaging
experiments [96]. Regions of high gradient in the map
of visual space preferentially appeared to overlap with
regions of high gradient of the OPM. In ferret, however,
it has been reported that high gradient regions of the
map of visual space correspond to regions of low gradi-
ent in the OPM [67]. In tree shrew V1, no local rela-
tionships between the mapping of stimulus orientation
and position seem to exist and the map of visual space
appears to be ordered up to very fine scales [108]. In
line with this, single unit recordings in cat area 17
revealed no correlation between receptive-field position
scatter and orientation scatter across local cell ensem-
bles [109,110].

Our analysis of the EN model shows that its optimal
states exhibit a negative correlation between the rates of
change of orientation preference and retinotopic posi-
tion, similar to what has been observed in the ferret
[67]. This is expected from the principle of dimension
reduction and in agreement with the original numerical
results by Durbin and Mitchison [21]. However, both in
simulations of the gradient descent dynamics and in
deterministic annealing simulations with periodic
boundary conditions as well as in analytically obtained
optimal solutions, deviations from a perfectly uniform
mapping of visual space are surprisingly weak (see Fig-
ures 9, 10, 18, and 25 in Appendix 1).

Deterministic annealing simulations with open non-
periodic boundary conditions showed a substantially
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increased magnitude of retinotopic distortions. This
raises the possibility that different behaviors observed in
different experiments might be at least partially related
to the influence of boundary effects. The influence of
boundary effects is expected to decline into the interior
of an area, in particular for large areas as V1 (see [111]).
In the bulk of V1, we thus expect only a weak coupling
of orientation map and retinotopic distortions according
to the EN model. In this regime, the predictions from
models with reduced rotational symmetry (so-called
Shift-Twist symmetry [112]) about the coupling between
retinotopic distortions and OPMs [33] appear to be
more promising than the weak effects resulting from the
coverage-continuity-compromise. Consistent with the
measurements of Das and Gilbert [96], such models pre-
dict small but significant positive correlations between
the rates of change of orientation preference and retino-
topic position [33]. Moreover, the form of the retinoto-
pic distortions in such models is predicted to differ for
pinwheels with positive and negative topological charge
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[92]. This interesting prediction of OPM models with
Shift-Twist symmetry deserves to be tested by measur-
ing the receptive field center positions around the two
types of pinwheels with single cell resolution [12].

Aperiodic OPMs reflect long-range intracortical
suppression

Our unbiased search through the space of stimulus
ensembles with finite fourth moment revealed the exis-
tence of spatially aperiodic optimal solutions in the EN.
It is important to realize that the selection of these solu-
tions is not easily viewed as resulting from an optimal
compromise between coverage and continuity. In fact,
the continuity parameter in the respective parameter
regime is so small that solutions essentially maximize
coverage (see Figures 12, 15, and 16). Instead, this phe-
nomenon reflects a different key factor in the stabiliza-
tion of pinwheel-rich aperiodic layouts, namely the
dominance of long-ranged and effectively suppressive
interactions. This is illustrated in Figure 20 which
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Figure 20 Different patterns of evoked activity for different effective ranges of intracortical interaction in the EN model. The
component {s,z(x)) of the orientation map z(x) in the direction of the stimulus s is plotted as a meshed 3D graph in a 6A X 6A patch. Color
code and height of the projection below indicate the strength of activation. The stimulus is presented in the center of the displayed cortical
subregion. (a) Evoked activity patterns e(x, S, z r) for small interaction range 6/A = 0.1 and weakly oriented stimulus with s, = 0.01 (left) and
strongly oriented stimulus with s, = 4 (right). rPWCs (see upper right) are optimal in this regime. (b) Evoked activity patterns e(x, S, z r) for large
interaction range o/A = 0.9 and weakly oriented stimulus with s, = 0.01 (left) and strongly oriented stimulus with s, = 4 (right). Spatially
aperiodic 8-planforms (see upper right) are optimal in this regime. A uniform retinotopy was assumed in all cases for simplicity.
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depicts different forms of stimulus-evoked activity pat-
terns in the EN model. For a short-range interaction
(Figure 20a), the activity evoked by low as well as high
orientation energy stimuli is an almost Gaussian activity
peak located near the stimulus position. The peak is
shallow for low (left) and sharp for high ‘orientation
energy’ (right). In the corresponding parameter regime,
square pinwheel crystals are the optimal solution of the
EN. For a longer range of interaction where aperiodic
OPM layouts are the optimal states, the activity evoked
by a single point-like stimulus is qualitatively different.
Here, the activity pattern is extended and spans several
hypercolumns (Figure 20b). It is weakly modulated for
low orientation energy stimuli (left) and consists of sev-
eral distinct peaks for high orientation energy stimuli
(right). In this regime, neurons at a distance of several
columns compete for activity through the normalization
term in the EN which leads to a nonlocal and effectively
suppressive intracortical interaction.

It is presumably not a mere coincidence that recent stu-
dies of abstract variational models of OPM development
[35,38,93] mathematically identified this type of interac-
tion as a key mechanism for stabilizing realistic OPM lay-
outs. It has been shown that all models for OPM
development that share the basic symmetries (i) transla-
tional symmetry (ii) rotational symmetry (iii) shift symme-
try and (iv) permutation symmetry and in addition are
dominated by long-range suppressive interactions, form a
universality class that generates maps exhibiting a univer-
sal and realistic pinwheel statistics. In such models, sup-
pressive long-range interactions are key to stabilizing
irregular arrangement of pinwheels, which otherwise lar-
gely disappear or crystalize during optimization. We have
stressed that the EN model as considered here obeys the
symmetries (i) to (iii). In the limit of infinite orientation
stimulus ensemble fourth moment, permutation symmetry
(iv) is restored. The EN can thus be tuned into the above
universality class by sending the orientation stimulus dis-
tribution fourth moment to infinity and choosing an expo-
nentially small continuity parameter to realize effective
long-range coupling. Indeed, the phase diagrams for
abstract variational models of OPM development [35] and
those of the EN model found here are structurally very
similar. In both cases, a rather large orientation stripe
phase is complemented by a cascade of phase transitions
toward more complex, aperiodic and pinwheel-rich OPM
layouts induced by long-range suppressive interactions.
Using abstract variational models, it has been shown
recently that the stabilization of regular crystalline pin-
wheel layouts can alternatively be achieved by a strong
coupling between the map of orientation and the map of
eye dominance [37,107]. The structure of the phase dia-
grams of such models however appears fundamentally dif-
ferent from the structure of the EN phase diagrams.
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The parameter regime in which the EN model’s optimal
solutions exhibit the experimentally observed pinwheel sta-
tistics is not at all intuitive and in our opinion questions
the conventional interpretation of the EN model for the
formation of cortical feature maps. Firstly, the extremely
small continuity parameter questions the fundamental role
of a tradeoff between coverage and continuity. We note
that such a parameter regime is currently not accessible to
numerical simulations. In addition, an apparently funda-
mental property for any adequate model for OPM optimi-
zation or development, namely a Turing-type finite
wavelength instability of the unselective state [32], is lost in
the limit 7 — 0. At first sight the infinite fourth value
required may appear reminiscent of the power-law distri-
butions for orientation energy found in the statistics of nat-
ural images [113,114]. However, as visualized in Figure 20b,
the essential property of the EN model in the infinite
fourth moment regime is the occurrence of patterns of
activity spatially extended beyond a single hypercolumn
representing spatially localized point-like stimuli. These
activity patterns mediate the long-range interactions
between distant orientation columns which in turn cause
the stability of realistic pinwheel-rich aperiodic OPM lay-
outs. It is obvious that spatially extended stimuli provide a
much more plausible and realistic source of extended activ-
ity patterns in models for visual cortical development (for
an extended discussion see [54]). Optimization models for
cortical maps based on the representation of more complex
spatially extended visual stimuli, such as natural scenes,
rather than a model based on point-like stimuli with
extreme statistics would then be a more appropriate basis
for understanding visual cortical functional architecture.

Comparison to the SOFM model

Several alternatives to the EN model have been proposed
as optimization approaches that can account for the struc-
ture of visual cortical maps. One prominent alternative
dimension reduction model is the so-called SOFM, origin-
ally introduced by Kohonen [59]. It is widely believed that
this model, albeit lacking an exact energy functional [115],
implements a competition between coverage and continu-
ity very similar to the EN model [56,57,66,115]. The
SOFM has been reported to reproduce many of the
experimentally observed geometric properties of visual
cortical feature maps (e.g., [56,57,61,66-68]). The numeri-
cal procedures used in all of these studies were either the
deterministic annealing procedure or the nonrecurring
application of a stimulus set without systematic assess-
ment of pattern convergence. An analysis of the nontrivial
stationary states of a dynamical systems formulation of the
SOFM model is currently lacking. The main difference
between the SOFM model and the EN model is that the
activation function by definition has the form of a stereo-
typical Gaussian and competition is incorporated by a
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hard winner-takes-all mechanism. As a consequence, it is
not obvious that a long-range suppressive interaction
regime can be realized in this model. According to our
analysis, one would thus expect orientation stripes and
rPWCs as nontrivial stationary states of the SOFM model.
In a very recent study of the SOFM algorithm that used a
numerical procedure similar to the gradient descent simu-
lations developed in this article, both pinwheel annihila-
tion and rhombic pinwheel crystallization have been
observed [116]. In addition, one study that examined the
SOFM model for orientation and retinotopy found a fast
convergence to pinwheel-free stripe-like solutions for a
wide parameter range [25]. In view of these results, it
seems worthwhile to also reexamine the SOFM model
with respect to its stationary states.

Rugged or smooth energy landscape

As for many optimization problems in biology, the optimi-
zation of visual cortical functional architecture has been
considered a problem characterized by a rugged energy
landscape [76]. In case of the EN model the expectation of
a rugged energy landscape at first sight seems quite plausi-
ble. Originally, the elastic network algorithm was invented
as a fast analogue method to approximately solve NP-hard
problems in combinatorial optimization such as the TSP
[77,78]. In the TSP, the stimulus positions correspond to
the locations of cities a salesman has to visit on the short-
est possible tour. In problems such as the TSP, the energy
functionals to be minimized are known to possess many
local minima and the global minimization of these func-
tionals generally represents an extremely difficult problem
[78]. Our analysis reveals that the trade-off between cover-
age and continuity for the mapping of a continuous feature
space manifold leads to a much simpler structure of the
energy landscape. This is also indicated by the fact that
almost all of our gradient descent dynamics simulations
readily converged to the predicted global minimum of the
energy functional. Figure 21 illustrates the smooth struc-
ture of the EN energy landscape close to pattern formation
threshold for different model parameters for a one dimen-
sional path through the state space. In this landscape, the
small set of stable planforms correspond to local minima
of the EN energy functional, and unstable planforms to
saddle points in the energy landscape. The optimal states
correspond to global minima. Note that along the depicted
state space path, unstable stationary solutions may appear
as local minima if the unstable directions along which the
energy decreases are orthogonal to the path.

What is the origin of this qualitative difference in the
shape of the energy landscapes? In the traveling salesman
problem, the finite repertoire of possible tours consists of
all permutations of the N cities that the salesman has to
visit. By self-organized competition between the aim to
visit all cities and the aim to minimize the path length, the
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elastic network algorithm converges to a specific ordering
of the cities that eventually yields a very short tour. Most
likely, the qualitative difference to the EN model for visual
cortical map architecture originates from the transition
from a finite number of cities to a continuum. When the
elastic network algorithm is considered with an ensemble
of cities (or stimuli) distributed according to a continuous
probability density function, there is no discrete repertoire
of tours. Both, the repertoire of tours as well as the path
through the landscape of cities or equivalently the space of
visual stimulus features are determined by self-organiza-
tion. The first is generated by the symmetry breaking
mechanism that leads to the instability of the homoge-
neous state. The second corresponds to the selection of
one of the many nontrivial stable steady states.

An interesting property of the EN model dynamics
that can be inferred from the energy landscape depicted
in Figure 21 is the type of competition between two
stable stationary states, where both are present in the
system with a wall or a domain boundary between
them. The motion of the wall or domain boundary is
predicted to proceed in the direction that increases the
fraction of the pattern with lower energy. An example
of such competition can be seen in Figure 23g in
Appendix. At ¢t = 1007, a small domain with an sSPWC
state is present. The area of this region is gradually
reduced over the time course of the simulation until the
pinwheel-free optimal state is reached.

Are simple OPM layouts an artifact of model simplicity?
The perfectly periodic types of stationary solutions
(stripes, crystals) that appear to dominate the classical
EN model for retinotopy and orientation have been
found in other models of visual cortical layouts that are
relatively abstract. One might therefore suspect that
they represent a mere artifact of model simplicity. One
conceptually appealing approach where perfectly peri-
odic layouts have been found is wiring-length minimiza-
tion [27]. According to this hypothesis, the structure of
an OPM can be understood by minimizing the total
length of dendritic and axonal processes. Maps obtained
by stopping minimization of wire length exhibited quali-
tatively realistic layouts (see Figure 6 in [27]). Complete
optimization, however, leads to either stripe-like pin-
wheel-free patterns or rPWCs, identical to the ones
obtained in our investigation of optimal solutions of the
EN model [27]. Similarly, stripe-like and rhombic
optima have been found in several abstract vector-field
approaches for OPM development [31,33,117].

It is ruled out by two observations, that the crystalline
and perfectly periodic optima observed in all four opti-
mization models, the EN model, the SOFM, the wiring-
length minimization model, and the vector-field models
are a mere artifact of the abstract order parameter field
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Figure 21 lllustration of the EN energy landscape close to pattern formation threshold. The variation of the energy between states of
ideal OS, the 2-ECP state, sPWC and possible mode configurations for 8-ECPs is shown for the case that (a) the OS state has the lowest energy
(s4 =0, 6/A = 0.3), (b) the sPWC state has the lowest energy (s, = 0, 6/A = 0.1), and (c) the most anisotropic 8-ECP has lowest energy (s4 = 100,

o/A = 0.8). The energy values between the state are computed from a state obtained by linear interpolation between two neighboring states
on the x-axis. Note that not all local minima in a-c correspond to a stable fixed point of the amplitude dynamics (see text).

description of cortical selectivity patterns that is com-
mon to these approaches. Firstly, equally simplistic
order parameter models for OPM development with
long-range interactions have been shown to reproduce
spatially irregular map layouts [35,38,93]. The occur-
rence of periodic optimal solutions is thus not a neces-
sity in this model class. Secondly, pinwheel
crystallization has also been observed in detailed net-
work models for the development of OPMs, notably in
the first ever model for the self-organization of orienta-
tion selectivity by von der Malsburg in 1973 [14,118].
Thus, on the one hand the phenomenon of pinwheel
crystallization is thus not restricted to simple order
parameter models and on the other hand abstract and
mathematically relatively simple models can exhibit
complex and biologically realistic optimal solutions.

Map rearrangement and layout optimization

Irrespective of the optimization principle invoked to
describe the structure of visual cortical maps, several com-
mon features of the resulting dynamics have been
observed. The dynamics of optimization models usually
starts with a phase of pattern emergence, where selectivity
to visual features arises from an initially homogeneous
unselective or weakly selective state. As we and others
have shown, feature maps in these models continue to
evolve after single cell selectivities reach mature levels. In
fact, the phase of initial pattern emergence is typically fol-
lowed by a prolonged phase of rearrangement of selectiv-
ities and preferences until a stable configuration is reached
that represents a genuine optimum. This is not an excep-
tional type of dynamics but rather constitutes the generic
expectation for a spatially extended system [83,84].
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What drives the second phase of map rearrangement?
The initial emergence of feature selectivity is predomi-
nantly a local process in which merely neighboring units
interact with each other to roughly match their selectiv-
ities. In the resulting spatial layout, selectivities are
therefore far from being optimally arranged in space
with respect to the global organization of selectivities on
larger scales. Depending on the interactions incorpo-
rated in the model, local matching processes may (i)
effectively propagate through space optimizing the pat-
tern over gradually increasing spatial scales or (ii) dis-
tant sites may start to directly interact with each other
to guide a rearrangement toward a globally optimized
pattern after their initial emergence.

An illustrative example is provided by the emergence
of pinwheel-sparse orientation stripes. Qualitatively, it is
easy to see that a pattern of orientation stripes satisfies
the continuity constraint very well. In a stripe pattern,
preferred orientations are constant along one direction
in space, realizing the absolute minimum of the orienta-
tion gradient in this direction. Reaching such a config-
uration obviously requires to select the preferred
orientation at widely separated sites (along the stripe
axis) to be identical. Because initially such sites develop
independent preferred orientations, the optimized col-
umn layout can only emerge through a secondary rear-
rangement process. If the dominant low energy state has
low pinwheel density, the later phase is governed by pin-
wheel motion and pairwise pinwheel annihilation. If this
state is pinwheel-rich, e.g., a pinwheel crystal or an aper-
iodic pinwheel-rich state, both pinwheel annihilation
and pinwheel creation together with a coordinated rear-
rangement of pinwheels are expected to occur.

The local, essentially random processes during the initial
emergence of a fist pattern are in principle incapable of
directly generating an optimized layout. In fact, it has been
established that this initial so-called symmetry breaking
phase will in general produce a random arrangement of
selectivities of model-insensitive statistics [25,32,36]. The
occurrence of some form of secondary reorganization is
thus a qualitative prediction of any optimization model,
provided that the optimal map is not seeded by an innate
mechanism. The results presented in this study and many
reports demonstrate that Hebbian plasticity is capable and
often expected to achieve such rearrangements.

In gradient descent dynamics simulations of the EN
model for retinotopy and stimulus orientation with con-
ventional stimulus ensembles, pinwheel densities were
found to be strongly time-dependent after the initial col-
umn formation (see e.g. Figures 6, 7). In particular, the
timescale for the establishment of full orientation selectiv-
ity and the time needed for either annihilation of a sub-
stantial fraction of pinwheels or their crystallization into
periodic pinwheel crystals are in the same range of tens of
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tau. A similar time dependence of pinwheel density has
also been observed in other models for OPM development
with periodic optima [35,38]. Pinwheel annihilation in the
EN can be slightly slowed down by additional features
such as retinotopy Figures 10 and 17 or OD [25,37] but
not by orders of magnitude. For this reason, signatures of
the periodic optima of a developmental dynamics become
visible at rather early simulation stages. Long-term mini-
mization is apparently not essential to express the main
layout features of the global minimum.

Because the main features of the dominant optimal solu-
tions become apparent immediately after orientation selec-
tivity saturates it appears not easy to reproduce the
species-independent map layout in models with periodic
crystalline optima by pattern freezing. In our simulations
to match even only the pinwheel density, a very precise
timing of the freezing point would be required. There is
currently no evidence for such a freezing mechanism in
early development. In cats and ferrets, cortical maps for
OD, orientation or direction arise on a timescale between
hours and a few days (e.g., [13,119,120]). The underlying
circuits can be rapidly modified, e.g. by deprivation experi-
ments, even on the timescale of hours [121,122] weeks
after full selectivity has been established. Recently, evi-
dence for long-term visual cortical circuit reorganization
after the emergence of feature selectivity during normal
development has emerged in diverse systems. In mouse,
for example, activity-dependent changes induced by nor-
mal visual experience during the critical period, i.e., long
after the primary emergence of orientation selectivity,
have been shown to gradually match eye-specific inputs in
the cortex [123]. Specifically, the data from mouse indi-
cates that preferred orientations in the two eyes initially
often emerge unmatched and subsequently change toward
one binocularly matched orientation preference. Because
preferred orientations in the two eyes initially are statisti-
cally independent, this suggests that neurons can rotate
their orientation preferences up to at least 45° during post-
natal development. This is reminiscent of pairing experi-
ments in kitten visual cortex in which Frégnac and
coworkers induced neurons to changed their preferred
orientation by up to 90° after pairing of a visual stimulus
with intracortical stimulation [124,125] (see also [126]).
Also in the cat, visual cortical orientation columns in
visual areas V1 and V2 have been found to undergo rear-
rangement during the late phase of the critical period [41].
In this process, columns in mutually connected regions of
areas V1 and V2 or in retinotopically matched regions in
left and right hemisphere areas become progressively bet-
ter matched in size. In the same species, a systematic reor-
ganization of OD columns during postnatal development
has been observed [69]. Essential features of this columnar
rearrangement are reproduced by the EN model for OD
patterns simulated in a growing domain.
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In view of these observations, it seems unlikely that
aperiodic orientation maps in the visual cortex represent
frozen transient states of a developmental dynamics whose
attracting layouts are pinwheel crystals or pinwheel free
states. In fact, models for the activity-dependent develop-
ment of OPMs with aperiodic optima predict only subtle
changes of the OPM layout during the convergence after
the establishment of selectivity [35,38]. This might also
explain the apparent stability of cortical maps during nor-
mal development over short periods [119]. Further studies
of the long-term rearrangement and stabilization of corti-
cal functional architecture are needed to exhaustively
characterize such processes. Given the fundamental role of
map reorganization for any optimization theory of visual
cortical development, chronic imaging experiments track-
ing the spatial arrangement of feature selectivities in indi-
vidual animals beyond the emergence of selectivity and
through later developmental stages are expected to be
highly informative about fundamental principles of visual
cortical optimization.

Conclusions

Together with recent progress on the quantitative char-
acterization of cortical functional architecture [38,69,93],
this study lays the foundation for a mathematically rig-
orous and biologically informative search for optimiza-
tion principles that successfully explain the architecture
of columnar contour representations in the primary
visual cortex. A mathematically controlled and quantita-
tively precise determination of the predictions of candi-
date optimization principles is demanded by
accumulating evidence indicating that geometrical fea-
tures of visual cortical representations are biologically
laid down with a precision in the range of a few percent
[38,127,128]. Such data is expected to substantially
reduce the range of candidate optimization principles
that are consistent with biological observations. In parti-
cular, for the principle that cortical orientation maps are
designed to optimally compromise stimulus coverage
and feature continuity, our analysis demonstrates that
the classical EN model for orientation preference and
retinotopy essentially fails at explaining the biologically
observed architecture. Our finding that the EN model
exhibits biologically realistic optima only in a limit in
which point-like stimuli are represented by complex
spatially extended activity patterns corroborates that
large-scale interactions are essential for the stabilization
of OPM layouts with realistic geometry [35,39,87,93]. In
the light of these results, principles for the optimal
representation of entire visual scenes by extended corti-
cal activity patterns appear as promising candidates for
future studies (see also [54]). In fact, there is recent evi-
dence that visual cortical activity becomes progressively
better matched to the statistics of natural stimuli but
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not to simplistic artificial stimulus ensembles [129]. We
expect the methods developed here to facilitate a com-
prehensive characterization of such candidate principles.

Methods

Expansion of EN equation

In order to analytically calculate the approximate opti-
mal dimension-reducing mappings in the EN model
with fixed retinotopy, an expansion of the nonlinear EN
OPM dynamics (Equation (3)) up to third-order around
the unselective fixed point has to be derived. This
expansion is briefly sketched in the following. Equation
(3) with r(x) = 0 is of the form

8,z(x, 1) = Ni[z] + nAz(x, 1),

where A4[z] is a nonlinear functional of z(-, £), para-
meterized by the position x. Clearly, the diffusion term
contains no nonlinear terms in z(-, t) and therefore third
order terms of the dynamics 9,z(x, ) exclusively stem
from third order terms of the Volterra series expansion
of the functional N¢[z] around the fixed point z(x, £)=
0. By the Shift symmetry (Equation (8)), only third-order
contributions of the form N3]z, z,z| are allowed, i.e.,

I | 83Nklz] _
Nslz,z,z] = ) /// Pyd*wd?v 52(y)82(w)9Z(v) EOz(y)z(w)z(v).

Collecting all the terms yields

11
Nslz,z,2] = Y ajNj|z],

j=1

37)

where
N3zl = |00 "2(x)
N3t = (9 [ Epkaty = )
N3l =20° [ ykaly ~ )
N3l =20 [ iy 0l
N3l =2 [ rkay — )
NSEl = [ Epkaty = ) lety) ) (38)

Nilel =20 [ Enutcty - w=x y - witwi(y)

N3f =30 [ rukaty = w= sy - wietwi(y)

N2l = / / / PyPudvKi(y —x, WX V—X y—W, V—W, y— VEV)z(w)z(y)

Nl = [ dukaty = x w=x, y = w0 ()

Nl = [ Koty = w=x, y = we(w)2ty)
and

SONE

(x2ax2 152 2
KS(XIIXZIXS) - e (x7+x3+x3)/(60%)

(2 2 X2 x2 +x2 2
K4(X1,X2,X3,X4,X5,X6) = ¢ (x]+X5+X5+X; +X5+X¢ ) [ (80 )‘
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The coefficients a; for various orientation stimulus
ensembles are given in ‘Results’ section.

Adiabatic elimination of r(x, t)

In order to analytically calculate the approximate optimal
dimension-reducing mappings in the EN model with vari-
able retinotopy, an expansion of the nonlinear EN retino-
topy and orientation map dynamics (Equations (3, 4)) up
to third-order around the nonselective fixed point has to
be derived and retinotopic distortions have to be adiabati-
cally eliminated. Both of these calculations are briefly
sketched in the following. Equation (3) is of the form

8iz(x, ) = Ni[z, 1] + nAz(x, 1),

where Ny[z, 1] is a nonlinear functional of z(-, £) and r
(+, t), parameterized by the position x. The diffusion
term contains no nonlinear terms in z(-, ) and therefore
third order terms of the dynamics of z(x, ) exclusively
stem from third-order terms of the Volterra series
expansion of the functional Ni[z, 1] around the fixed
point {z(x, £)= 0, r(x, £)= 0}. By the shift symmetry
(Equation (8)), only terms in form of a cubic operator
N3z, z,z] and a quadratic operator Q°[r, z] are allowed
when expanding up to third order. N3[z,z, z] is given in
Equation (37). Qlz, r] can be calculated via

@ - / / Py (5 o M2 T g1 O0) + g NI 2 (W) 2(9)

and this yields

@teal= @102 [yt ki)
o [zt - + B [ s )
0[] ety K5 = xw -y w,

where (., -) denotes the scalar product between two

vectors and

Ky(x) = ek (39)

2,2 o2
X]+X5+X3

Kj(x1,%2,%3) = e 60 (40)

[x1 +X3].

In complete analogy, by expanding the right hand side
of the dynamical equation for the retinotopic distortions
(Equation (4)) up to second-order, the vector-valued
quadratic operator Q'[z,z] can be obtained as

2
Qe - —m( b0 [y - x)z(y))

20 — \sz
3270°

(lszl 2,72 T
79725 / d“yd"wK;(y — x, y — w, w — X)z(w)z(y).

/ YKy (y — x)lz(y)I? (41)
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Inserting 1(x) = —L'[Q’[z,Z]] into Q°[r, z] and using
the linearity of L;! as well as the bilinearity of both,
Q'lz 2] Q[r, 2],
Nilz z z] = Z AN, with

N =20 [ (1 [0 (50 [ ot - en) | kot - )

N2 =200 [y (17 [ ko -y | Kty )

N =2t [ i [ J[ vy vy y)z(w)z(vl] K505 -x)
Nt = (1 [ (200 [ -0 | [ #ramiy -)

N2 = (1 [ [ e -0ee] [ @iy )

NS = <L, ! [ / f AydwKy(y - x,y - w,w — x)z(w)i(y)] . / dy(y)Ks(y — X))

N - [ )1 [ (200 [ s = yzm) ) sty )

= [ et (1] [ o -y ity )

and yields a  sum

dﬁz[y]( //dzvdzwl(.,[w YW=V, V— y)z(w)z[y)] Ki(y — x))

il
il
NP = // Aydwz(y) <L [Y\ (z(w) / ARy (v — w)z(v))] Ky —xy—w,w— x)>
{
(-

N = [[ evat (1 [[ dsz;[v—w)\z(vuz],Ks(y—x,y—w,w—x))

N - /f ydwz(y) (L [// Poduky(v —w,v —u,u— w)z(v)i(u)] K7 — %,y — W W — y)>.
The coefficients 4/ are given by

(s = 20%) () _

_(1 —02)

' 25672012 6472012
o WsP) =207 (1-0%)
" 51272012 12872012
s WsP)Y =207 Gy (1-07)
' 115273014 28873014
2
Ao (o)™ _ 1
! 25672012 642012
s sP) =207 sy (1-07)
" 51272012 12872012
2
a® = <|5z|2> _ 1
" 1152m3014 288m30l4
2
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2
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2
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n s = 202) (Ise?) (1 —-0?)

a. = =
T 115273014 28873014
2
a2 (Isz1%) _ 1
r 259274016 6484016’

where the second equal sign is valid for (|s,|?) = 2
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Amplitude equations from N%|z, z, Z]
We catalog the numerous stationary solutions of Equa-
tion (13) following [35], by considering planforms

N
a(x, 1) = ) Aj(1)e™

j=1

with an even number N of modes with amplitudes A;
and k; = k.(cos(27j/N), sin(27j/N )). In the vicinity of a
finite wavelength instability, where the nonselective state
z(x) = 0 becomes unstable with respect to a band of
Fourier modes around a finite wave number k.-by sym-
metry, the dynamics of the amplitudes A; at threshold
has the form

N N
Ai=Ai— A GilAIIR =) fiAAFAr
j1 j1

(42)

where j~ denotes the index of the mode antiparallel

to the mode j, kj=—kj-, and the coefficients

8= (1= 38;)8(lei — 4])
fi= (1 =38;—8-)f(lei — ;) only depend on the
angle |a; - o] between mode i and j. The angle-depen-
dent interaction functions g(a) and f(a) are obtained

from Equation (13) by a multi scale expansion
[35,83,84,87] as

and

gla) = - o~ ikox [N§ ( ¢lkox gih(@)x e—ih(a)X)
(43)
+ N&( (@)X p—ih(@)x eing):I
fla) = - 1 o ikox [ NE( eM(@)x p—ih(a)x yikox
2 (44)

+ Ng (, e—ih(a)xl eih(a)x’ eikOX):I ,

where ko = k.(1, 0) and h(¢) = k.(cos o, sin &). flor) is
n-periodic, since the right hand side of Equation (44) is
invariant with respect to the transformation h(e) — h(a
+ 1) = -h(@). g(e) is 2m-periodic in general. If, however,
the nonlinearity is permutation symmetric (Equation
(34)) it can be seen from Equation (43) that g(@) is 7-
periodic as well.

Stability of stationary planform solutions

To determine the stability of fixed points of the ampli-
tude equations (42), the eigenvalues of their stability
matrices have to be determined. In general, for any
fixed point A = A° of the dynamical system A = F(A)
with complex-valued A and F, we have to compute
the eigenvalues of the Hermitian 2N x 2N matrix
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oF  OF

_ [ A A
M=% &
A 0A

For the system of amplitude equations, we obtain

A=A,

N

JoF; - -

5 A; = 18i1, — ik (Z 8ij |Aj|2) — AigikAr — Ai-fire(Ar- + Ar)
j

JF; -
= —AgAr— S | D fiAiA- | -
0Ay, j

Stability of a solution, or more precise intrinsic stabi-
lity is given, if all eigenvalues of M are negative definite.
Extrinsic stability is given, if the growth of additional
Fourier modes is suppressed. To test whether a plan-
form solution is extrinsically stable, we introduce a test
mode T such that

N
z(x) = Te™* + ZA]-eikfX,
j

with kg = (cos B, sin B)k.. We insert this ansatz into
Equation 15 and obtain

N
AT =1T =Y g(B— ) IAIPT + O(T?)
j

as the dynamics of the test mode 7, where g(f3) is the
angle-dependent interaction function corresponding to
N3z, z,z]. For the solution T = 0 to be stable, we there-
fore obtain the condition

N
r=Y g(B - B)IA> <0, Vael0,27],
;

where we assumed kg #k;, kj_. These conditions for

intrinsic and extrinsic stability were numerically evalu-
ated to study the stability of #n-ECPs and rPWCs.

Coupled essentially complex planforms

In ‘Results’ section, we presented a closed form expres-
sion for the retinotopic distortions associated via Equa-
tion (28) with stationary planform solutions of Equation
(29). Here, we sketch how to explicitly calculate this
representation. We start with the ansatz

n
2(x) = Y A" k| =k (45)
j

for the OPM z(x). Note that this general ansatz
includes essentially complex planforms as well as
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rPWCs. To simplify notation, we denote the individual
terms in Equation (41)

_ (sl
2] = -9t
Ql[z Z] (167TUGZ
202 — (Is:|?)
32mo®

2
Q= 5% ) [[ drduy—xy —wow - e,

) [ ErKsty = 00

Q27 = [ @y -0z

Each of the Q;[z,z], i = 1, 2, 3 can be evaluated for
the planform ansatz in Equation (45) and we obtain

r n n 7 262 N

3o (Isz)e 7 p )

Q| DoA™ Y A | = “ g2 > 19(AA) (I — ki) sin( (k; — ki)x)
L k |

kj<k
+3(AjA) (kg — ki) cos((Kj — k)x))

[ n n ] 2 2 n

- 207 — (|sz|*) (ki 23

Q| A 3 Ao | < - 207 )3 e (1~ k) R4 sin((K; — ki)
L k i

j<k
+3(AjAr) cos((kj — ki)x)}

—ki)?

ka?
P 2 & _(k'o? P
_ (sl 372 Ski—k)em 2 {N(AAR) sin((kj — ki)x)

. . .
Qs ZA/elk,x’ Zl_ihe’"‘“‘
L7 k _

ji<k
+ (A os((l — ke)))-

All resulting terms are proportional to either (k; - k;)
sin((k; - kyx) or (k; - k;) cos((k; - k;)x) i = j. These func-
tions are longitudinal modes (see Figure 3b) which have
been identified as eigenfunctions of the linearized
dynamics of retinotopic distortions L,[r] with eigenvalue

2 (ki = K1) = [k — | (i, + e Il o?)

Hence, they are eigenfunctions of L, ![r] with eigenva-
lue 1/A%(Ik; — Kj|). Using this when inserting in Equa-
tion (28) and setting (|s,|*) = 2, we obtain expression
(31) for the retinotopic distortions belonging to an arbi-
trary planform.

Phase diagrams

To compute the regions of minimal energy shown in
Figures 6, 10, 12, 15, and 16 as well as Figures 23, 25 in
Appendix 1, we first computed the fixed points of Equa-
tion (42) at each point in parameter space. For n-ECPs,
we constructed the coupling matrix g in Equation (22)
for all mode configurations not related by any combina-
tion of the symmetry operations: (i) Translation:

Aj — AjeY, (ii) Rotation: A; — A, (iii) Parity:
Aj — A(N_j)—. By Equation (22), we then computed the
absolute values of the corresponding amplitudes. If
> (8"); =0 for all i, a valid n-ECP fixed point of
Equation 42 was identified. Its energy was then com-
puted by Equation (23). For orientation stripes and
rPWCs, the derived analytical expressions for their

energy (Equations (18, 20)) were evaluated. To analyze
the stability of the fixed points, the conditions for
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intrinsic and extrinsic stability (see above) were numeri-
cally evaluated.

Numerical procedures-gradient descent simulations

To test our analytical calculations and explore their
range of validity, we simulated Equations (3) and (4) on
a 64 x 64 grid with periodic boundary conditions. Simu-
lated systems were spatially discretized with typically 8
grid points per expected column spacing A,.x of the
orientation preference pattern (see ‘Results’ section) to
achieve sufficient resolution in space. Test simulations
with finer discretization (16 and 32 grid points per
Amax) did not lead to different results. Progression of
time was measured in units of the intrinsic timescale 7
(see ‘Results’ section) of the pattern formation process.
The integration time step J¢ was bounded by the rele-
vant decay time constant of the Laplacian in Equation
(3) around k. and by the intrinsic timescale 7 of the sys-
tem, using 8t = min{l/(20nkf), ‘L'/lO}. This ensured
good approximation to the temporally continuous
changes of the patterns. We used an Adams-Bashforth
scheme for the first terms on the respective r.h.s. of
Equations (3, 4). The second terms (diffusion) were trea-
ted by spectral integration, exhibiting unconditional
numerical stability. The stimulus positions s, were cho-
sen to be uniformly distributed in retinal coordinates.
The stimulus averages in Equations (3, 4) were approxi-
mated by choosing a random representative sample of
N; stimuli at each integration time step, with

N. —Inax{105 Nor? at}
s = 7 7

()" 7

where 7 corresponds to the dimensions of the feature
space in addition to the two retinal positions (in our
case, 1 = 2), I? = (L/Apmay)? the squared aspect ratio of
the simulated system in units of A2 &, the resolution in
feature space, Ny the number of stimuli we required to
approximate the cumulative effect of the ensemble of
stimuli within each feature space voxel &”*% . With N =
100 and &5 = 0.05, we ensured a high signal-to-noise
ratio for all the simulations. Typical values for N; were
between 2.5 x 10° and 4 x 10°. All simulations were
initialized with z(x, ¢ = 0) = 10%™™(*) and r(x, ¢t = 0) =
0, where the &(x) are independent identically distributed
random numbers uniformly in [0, 1]. Different realiza-
tions were obtained by using different stimulus samples.

Stimuli were drawn from different distributions, each
with (|s.|*) = 2. We considered (i) stimuli uniformly dis-
tributed on a ring with |s;|2 = v/2 (circular stimulus
ensemble), (ii) stimuli uniformly distributed within a cir-
cle {s,, |s.| < 2} (uniform stimulus ensemble), and (iii) a
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Gaussian stimuli ensemble with
ps, = 1/(27) exp(—Isz|*/2). In addition, we considered
mixtures of a high-fourth moment Pearson type VII dis-
tribution and the circular stimulus ensemble. The Pear-
son distribution is given by

1 [1 |sz|2]’"
= + P
Ps aB(m—},)) o?

where B(-,-) is the Beta function [130] and
a=+2m—3,and m=3+ ylzlz such that (|s,|*) = 2, (|

s.|*) = y or equivalently s, = 7 - 4.

In addition to simulations in which independent sets
of stimuli were used for evaluating the stimulus average
in Equations (3, 4) for every time step, we also per-
formed simulations in which the same fixed set of N sti-
muli was used (see ‘Results’ section). To determine the
time step ot in these simulations, we first calculated

_ NoI'?
(85)n

(parameters as in regular simulations) which yields the
number of stimuli presented to the model in one intrin-
sic time unit 7 in regular simulations. To subject the
network to the same number of stimuli per intrinsic
time scale 7 in fixed stimulus set simulations, the inte-
gration time step J¢ was in this case chosen as

N:

. | N 1 T
8t = min T, , .
{Ns 20nk2 10}

For small N, this resulted in very small integration
steps. For very large N, time steps were identical to the
regular simulations. Different realizations were obtained
by different but fixed stimulus sets. In all simulations
with fixed stimulus sets, stimuli were drawn from the
circular stimulus ensemble. All other numerical methods
were chosen as in regular simulations.

Numerical procedures - solving the EN model with
deterministic annealing

A large body of previous study has solved the EN
models for various aspects of visual cortical architec-
ture for discrete fixed sets of stimuli and using deter-
ministic annealing. We therefore also used
deterministic annealing with fixed discrete sets of sti-
muli to solve the EN model for the most frequently
used stimulus distribution. This allowed us to better
compare our analytical and numerical results based on
the gradient descent dynamics for a continuous stimu-
lus with prior results. For the discrete deterministic
annealing approach, cortical maps are described by a
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collection of M centroids {y,}M  C R? that can be

represented as a D x M matrix Y = (yy, . . ., Yu)-
Maps forming a compromise of coverage and continu-

ity are obtained for {x,}', C R? represented as a D x
N matrix X = (x4, . . ., Xp). In our case, d = 4. The

trade-off between coverage and continuity is formu-
lated by the energy function

2

) B
) tr(Y'YS). (46)

N M
E(Y,0) = —ao ZlogZe 2
n=1 m=1

The matrix S determines the topology of the network
as well as the boundary conditions and is typically
derived from a discretized derivative based on a finite
difference scheme or stencil (see below). For large N
and M, the energy function in Equation (46) is equiva-
lent to the energy functional of the continuum formula-
tion given in Equation (1) for f§ = nN and S
implementing the discretized Laplacian operator in two
dimensions.

Following [62-65,71] we minimized the EN energy
function (Equation (46)) by an iterative deterministic
annealing algorithm, starting with a minimization for
large o and tracking this minimum to a small value of
0. As in [4], we reduced o from 0j,;; = 0.2 to the point
at which the amplitude of the orientation maps saturate
(o = 0.03), following ¢ = Oy, % where j counts the
annealing step. This choice tracks stationary solutions of
the EN to parameters that are very far from threshold.
For high precision tracking of solutions, we used an
annealing rate of y = 0.999.

At each value of o, setting the gradient of Equation
(46) to zero yields a nonlinear system of equations

Xn=Ym
o

S+8T
YA-XW  with A=G+oﬁ< +2 ) (47)

Here, the N x M-matrix W is given by

1 2

2

Xn—=Ym
o

e

Wym = 2
Xn—Ym'
o

1
Z%’:l e’

and the M x M-matrix G is

N
8ij = 81’]’ E Whi.
n=1

A is a symmetric positive-definite M x M matrix. The
M x M matrix A is symmetric and positive-definite.
Since both G and W depend on Y, this equation is non-
linear in Y and has to be solved iteratively. Following
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[62-65,71], we solved Equation (47) at each value of &
and for each iteration directly via Cholesky-factorization.
We implemented periodic and nonperiodic boundary
conditions by appropriate choice of the matrix S. S
must be positive (semi)definite for the energy to be
bounded from below. We used the canonical 2D Lapla-
cian stencil of order 2, to construct the M x M matrix

—4+2a 1 0 0 - 1 00 0 0 0 1
1 —4+a 1 0 0 - 100 0 0 o0
0 1 —4+al 0 0 1
1—4+2a 1
1 —4+a 1
S= 0 1 41 0 - 1
0 1-41 0 - 1
01 —4+a 1 0
0 1 —4+al 0
1 1—-4+2a

Here, a = 0 for periodic boundary conditions and a =
1 for nonperiodic boundary conditions. In Appendix 3,
we also present simulation results for a fourth derivative
stencil, in which §* was used for the continuity term.
We used random stimulus positions and orientations as
well as stimuli arranged on a grid in feature space. For
random stimuli, positions were drawn from a uniform
distribution in [0, 1] x [0, 1]. Orientations s, were
drawn from the circular stimulus ensemble, with |s,| =
0.08 as in [65]. Stimuli from grid-like ensembles were
distributed evenly-spaced in [0, 1] x [0, 1] and contained
2K evenly space orientations with |s,| = 0.08.

To compute the energy of pinwheel-free configuration,
we initiated simulations with a stripe-like orientation
preference pattern with the same typical spacing as the
observed orientation maps and annealed from o = 0.035
to o = 0.03.

To enable comparison between simulations with dif-
ferent numbers of stimuli, we scaled the continuity para-
meter proportionally to N such that the equivalent n
was approximately constant. The simulated domain then
contained a comparable number of hyper columns for
all stimulus numbers.

Pinwheel density from simulations

Pinwheels locations in models were identified by the
crossings of the zero contour lines of real and imaginary
parts of the orientation map. Estimation of local column
spacing A(x) was done using the wavelet analysis intro-
duced in [127,128]. In short, an overcomplete basis of
complex Morlet wavelets at various scales and orienta-
tions was compared to the OPM pattern at each loca-
tion. A(x) was estimated by the scale of the best
matching wavelet. The mean column spacing (A(x)), of
a given map was then calculated from the local column
spacing by spatial averaging. For details we refer to
[38,127,128]. Given N,, pinwheels in a simulated
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cortical area of size L?, we defined the pinwheel density
[25,38,102]

(A)2

Y :pr 12

The pinwheel density p is a dimensionless quantity
and depends only on the layout of orientation columns.
The pinwheel density defined in this way is large for
patchy and small for more band-like columnar layouts.

Appendix 1

The impact of nonoriented stimuli

The main text of this article contains a complete analy-
sis of optimal dimension-reducing mappings of the EN
model with a circular ensemble of orientation stimuli.
These optima are simple regular orientation stripes or
square pinwheel crystals. The circular orientation stimu-
lus ensemble, however, contains only stimuli with a
fixed and finite ‘orientation energy’ or elongation |[s,]|.
This raises the question of whether the simple nature of
the circular stimulus ensemble might restrain the realm
of complex dynamics in the EN model. The EN
dynamics are expected to depend on the characteristics
of the activity patterns evoked by the stimuli and these
will be more diverse and complex with ensembles con-
taining a greater diversity of stimuli. Therefore, we also
examined the EN model in detail for a richer ensemble
of stimuli. In this ensemble, called a uniform stimulus
ensemble in the following, orientation stimuli are uni-
formly distributed on the disk {s,, |s,| < 2}, a choice
common to many previous studies, e.g., [19,25,81]. The
uniform ensemble in particular contains unoriented sti-
muli with |s,| = 0. Intuitively, the presence of these
unoriented stimuli might be expected to fundamentally
change the importance of pinwheels in the optimal
OPM layout. Pinwheels’ population activity is untuned
for orientation. Pinwheel centers may therefore acquire
a key role for the representation of unoriented stimuli.
As such an effect should be independent of retinotopic
distortions and to aid comparison with our previous
results, we will again start with a fixed uniform retino-
topy r(x) = 0.

The linear stability properties of the unselective fixed
point are independent of the ensemble of orientation
stimuli ((|s,|?) = 2 throughout this article). The coeffi-
cients in Equation (14), however, of course depend on
the fourth moment of the stimulus distribution. Insert-
ing {(|s,|*) = 16/3 into Equation (32), we obtain

@ =500 = g . 202 4y = 4;11061_ s @3 = _112710g + gras
aq = _61710B + 4710]5 grot 45 = T 1pn08 A6 = g706 T 12708
a7 = gp2410 — 127rzlaS a8 = 1gr2510 A9 = = 16n3512

ayp = 972510 T 127248 an = 18720510
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The angle-dependent interaction functions are then
given by

(o) = 1 (1 _ e ko? _ ko’ (cosa-1) (1 _ ze—hfalcosn())
0—4

1 2l —1 32 ke 4 2.2
2 (e ot (cosa1) _ 1) *506® “o"sinh* (1/2k20? cos )
1
fla)=, (1 — ¢ (cosh(2k20? cos @) + 2 cosh (k2o cos ) + Ze’k?”z)
o
16

1 —2k2o? 2 2
* 202 (e <" cosh(2k;o* cosar) — 1) * ap6

e 2 sinh" (1/2k20% cosa) .
Both functions are depicted in Figure 22 for two dif-
ferent values of the effective intracortical interaction
range o/A. They qualitatively resemble the functions
depicted in Figure 5. Figure 23 displays the phase dia-
gram of the EN model with uniform stimulus ensemble.
As summarized in the main part of this article, it is
almost identical to that obtained for the circular stimu-
lus ensemble (Figure 6). Two different optimal states are
found, square pinwheel crystals (sPWCs) and orientation
stripes (OSs) separated by a phase border at 6/A = 0.15.
Both fixed points are stable for all o/A. Figure 23b-k
demonstrates, that these analytical results are confirmed
by direct numerical simulations of Equation (3) with r
(x) = 0. As for the circular stimulus ensemble, we also
tested the stability of stationary n-ECP solutions with 2
< n < 20 by numerical evaluation of the criteria for
intrinsic and extrinsic stability (see ‘Methods’ section).
We find all n-ECPs with 2 < n < 20 intrinsically
unstable for all interaction ranges o/A. The simple
phase space structure furthermore apparently remains
unchanged if we consider the model far from pattern
formation threshold as shown in Figure 24. Simulations
bear a close resemblance to the simulations with circu-
lar orientation stimulus ensemble (Figure 7). Either con-
vergence to sSPWC-like patterns or patterns with large
orientation stripe domains is observed. Again, pinwheel
annihilation in the case of large o/A is less rapid than
close to threshold (Figure 24a,b). The linear pinwheel-
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free zones increase their size over the time course of the
simulations, eventually leading to a stripe pattern. For
smaller interaction ranges o/A, the OPM layout rapidly
converges toward a crystal-like rhombic arrangement of
pinwheels with dislocations and pinwheel density close
to 4.

Figure 25 shows that taking retinotopic distortions
into account yields an almost identical picture compared
to the circular stimulus ensemble. For small interaction
range o/A, the analytically predicted optimum is a quad-
ratic pinwheel crystal with pinwheel density p = 4. For
larger o/A, the analytically predicted optimum is an
orientation stripe pattern with pinwheel density p = 0.
Our results are confirmed by direct simulations of Equa-
tions (3, 4) (Figure 25b-e). The simulation results are
virtually indistinguishable from the circular stimulus
ensemble.

All together, the EN dynamic given by Equations (3, 4)
and in particular the set of ground states of the EN
model and their stability regions appear almost identical
when considering either a circular or a uniform orienta-
tion stimulus ensemble. We found two different optima
depending on the parameter regime, orientation stripes
for larger interaction ranges and quadratic pinwheel
crystals for shorter interaction ranges. In addition, the
EN dynamics appears to be unchanged by the presence
of unoriented stimuli.

Appendix 2

Strength of retinotopic coupling

In our manuscript, we have shown that retinotopic dis-
tortions only have a weak influence on the optima of
the EN model as well as its dynamics (see Figures 10
and 12). Here, we quantify the influence of retinotopic
distortions on the pattern formation process by compar-
ing the angle-dependent interaction function for

a o/A =0.1

40 -

30 -

20 -

10 -
0 | | | IO(.
/2 Vi 3r/2 2n

(a,b) gle) and fle) for 6/A = 0.1 (a) and o/A = 0.2 (b).

b o/A =0.2

Figure 22 Angle-dependent interaction functions for the EN model with fixed retinotopy and uniform orientation stimulus ensemble.
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Figure 23 Optimal solutions of the EN model for uniform stimulus ensemble and fixed representation of visual space. (a) At criticality,
the phase space of this model is parameterized by either the continuity parameter 1 (blue labels) or the effective interaction range o/A (red
labels, see text). (b, ¢) OPMs (b) and their power spectra (c) in a simulation of Equation (3) with r(x) = 0, r = 0.1, 6/A = 0.12 (n = 0.57) and
uniform stimulus ensemble. (d) Analytically predicted optimum for 6/A < 0.15 (rPWC). (e) Pinwheel density time courses for four different
simulations (parameters as in b; gray traces, individual realizations; black trace, simulation in b; red trace, mean value). (f) Mean squared
amplitude of the stationary pattern in simulations (parameters as in b) for different values of the control parameter r (black circles) and
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analytically predicted value (solid green line). (g, h) OPMs (g) and their power spectra (h) obtained in a simulation of Equation (3) with r(x) = 0, r
= 0.1, 6/A = 0.15 (n = 041) and uniform stimulus ensemble. (i) Analytically predicted optimum for 6/A 2 0.15 (orientation stripes). (j) Pinwheel
density time courses for four different simulations (parameters as in g; gray traces, individual realizations; black trace, simulation in g; red trace,

mean value). (k) Mean squared amplitude of the stationary pattern in simulations (parameters as in g) for different values of the control
parameter r (black circles) and analytically predicted value (solid green line).

retinotopic coupling g,(cx) with angle-dependent interac-
tion function of the EN model with fixed retinotopy.
We use the ratio

R
‘T 18Ol

as a measure to quantify the influence of retinotopic
distortions. || - ||, denotes the 2-Norm,

2
()2 = 5 f(@)da.

If ¢ is larger than one, g,(or) dominates the total interac-
tion function g(o) + g(er) and retinotopic distortions may
strongly influence the layout and stability of solutions of
the EN model. On the other hand, if ¢ is small, the solu-
tions and their stability properties are expected to not
change substantially when including variable retinotopy

into the EN model. Figure 26 displays the parameter c in
the s4-0/A-plane for the EN model at threshold for two
different conditions, 11 = 17,, and 1, = 0. In the latter case,
retinotopic distortions are expected to have the strongest
impact. However, in both cases, ¢ < 1, in almost all of
the parameter space, implying little influence of retinoto-
pic deviations. Only for small 6/A and small sy, ¢ is larger
than one. As shown in Figure 12, this leads to slight
deformations of the stability regions for rhombs, and
stripes in this region of parameter space but does not
result in novel optimal solutions.

Appendix 3

Grid-like stimulus ensembles

References [64,65]) performed simulations with stimuli
distributed in regular intervals in feature space, called
grid-like ensemble. For comparison, we also performed
deterministic annealing simulations with grid-like
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Figure 24 Numerical analysis of the EN dynamics with uniform orientation stimulus ensemble and fixed representation of visual space
far from pattern formation threshold. (@) OPMs and their power spectra in a representative simulation of Equation (3) with r(x) = 0, r = 0.8, o/
A =03 (n = 0.028) and uniform stimulus ensemble. (b) Pinwheel density time courses for four different simulations (parameters as in a; gray
traces, individual realizations; black trace, simulation in a; red trace, mean value) (c) OPMs and their power spectra in a representative simulation
of Equation (3) with r(x) = 0 and 6/A = 0.12 (n = 0.57), other parameters as in a. (d) Pinwheel density time courses for four different simulations
(parameters as in ¢; gray traces, individual realizations; black trace, simulation in ¢; red trace, mean value).

stimulus sets of varying size with nonperiodic boundary
conditions (see ‘Methods’ section). For these grid-like
stimulus patterns, a competition between stripes and
rhombs is observed (Figure 27a). Notably, these are the
only two stable states identified by our analysis for the
circular stimulus ensemble. For nonperiodic boundary
conditions, rhombic pinwheel arrangements seem ener-
getically favored for grid-like stimuli, almost indepen-
dently of the size of the stimulus set. The average
pinwheel density for N = 100 x 100 x 8 stimuli was p =
3.4 (Figure 27b). As expected from the predominantly
rhombic arrangement of pinwheels, NN-pinwheel dis-
tances concentrate around half the typical column spa-
cing and pinwheel pairs at short distances are not
observed (Figure 27c). With these features, the maps
obtained substantially differ from the experimentally
observed pinwheel statistics [38].

The discrete EN model with fourth derivative
In previous studies of the EN model, alternative defini-
tions of the continuity term in the EN model have been

explored [64]. A general continuity term for the spatially
continuous formulation of the EN for OPM and retino-
topy is a linear differential operator which will suppress
the emergence of high-frequencies during the EN
dynamics. A finite-wavelength instability is expected in
this case, although the precise expressions for the criti-
cal o and the typical wavelength will differ. As linear
terms do not enter in the higher-order derivatives of the
EN functional, changing the continuity term is not
expected to alter the stability results obtained in this
study.

To numerically test this expected robustness of our
results for the EN model with discrete fixed sets of sti-
muli (see Figures 18 and 19), we also performed simula-
tions using deterministic annealing with a fourth
derivative stencil (see ‘Methods’ section). Figure 28 illus-
trates that the results almost perfectly match the ones
for the second-order derivative, considered in the main
part of this article (Figures 18, 19 and Figure 27).

When annealing with periodic boundary conditions,
the solutions very much resemble our gradient descent
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Figure 27 The EN model with deterministic annealing and stimuli, distributed on a grid in feature space. (a) OPMs (left) and RMs (right)
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for N = 20 x 20 x 8 (upper row), N = 50 x 50 x 8 (middle row) and N = 100 x 100 x 8 (lower row) stimuli and nonperiodic boundary
conditions (annealing rate y = 0.999). B is the continuity parameter in the conventional definition of the EN model (see ‘Methods’ section,
Equation (46)) and is scaled, such that a comparable number of columns emerges in all simulation for each N. (b) Pinwheel densities of EN
solutions for different numbers of stimuli (@annealing rate y = 0.999). Crosses mark individual simulations, red line indicates average values. (c)
Statistics of nearest neighbor pinwheel distances for pinwheels of (upper left) arbitrary and (upper right) opposite and equal charge for
100x100x8 stimuli and nonperiodic boundary conditions, averaged over four simulations (red curves). Black curves represent fits to the
experimental data from [38]. Lower left: SD of pinwheel densities estimated from randomly selected regions in the OPM. Black dashed curve

indicates SD for a two-dimensional Poisson process of equal density.

dynamics simulations with Laplacian term. The larger
the set of stimuli, the more stripe-like are the OPMs
obtained (Figure 28a) and consequently pinwheel densi-
ties decrease (Figure 28b, upper right). The exponent
for the SD is considerably lower than for the Poisson
process (Figure 28b, upper right).Typical NN-pinwheel
distances concentrate around half the typical column
spacing and in particular pinwheel pairs with short dis-
tances lack completely (Figure 28b, lower left and right).

For nonperiodic boundary conditions and random sti-
muli, we found that retinotopic distortions are much
more pronounced. They however decreased with
increasing number of stimuli. For large stimulus num-
bers, we observed stripe-like orientation preference
domains which are interspersed with lattice-like pin-
wheel arrangements (see Figure 28c), lower row, upper
left corner of the OPM). Similarly to the periodic
boundary conditions, short distance pinwheel pairs
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Figure 28 The EN model with deterministic annealing and fourth derivative stencil. (a) OPMs (left) and RMs (right) for N = 103 (upper
row), N = 10% (middle row) and N = 10° (lower row) stimuli, non-periodic boundary conditions, and annealing rate y = 0.999. B is the continuity
parameter in the conventional definition of the EN model (see ‘Methods' section, Equation (46)) and is scaled, such that a comparable number
of columns is emerging in the simulations for each stimulus set. (b) Pinwheel densities (upper left) of EN solutions, SD of pinwheel densities
estimated from randomly selected regions in the solutions (upper right). Crosses mark individual simulations, red line indicates average values.
Black dashed curve indicates SD for a two-dimensional Poisson process of equal density. Statistics of nearest neighbor pinwheel distances for
pinwheels of arbitrary (lower left) and (lower right) opposite and equal charge for 10° random stimuli and periodic boundary conditions,
averaged over four simulations (red curves). Black curves represent fits to the experimental data from [38]. (c) As a but for nonperiodic boundary
conditions. (d) As b, but for non-periodic boundary conditions. (e) OPMs (left) and RMs (right) for N = 20 x 20 x 8 (upper row), N = 50 x 50 x 8
(middle row) and N = 100 x 100 x 8 (lower row) stimuli, nonperiodic boundary conditions, annealing rates y = 0.999. (f) As b, but for
nonperiodic boundary conditions and grid-like stimuli.

occur much less frequently than in the experimentally
observed maps, indicating an increased regularity in the
pinwheel arrangements compared to realistic OPMs
(Figure 28d, lower left and right). This regularity also
manifests itself in a smaller exponent of the SD com-
pared to the Poisson process (Figure 28d).

Simulations with grid-like stimulus as, e.g., used in
[64,65] displayed a strong tendency toward rhombic pin-
wheel arrangements analogous to the second derivative
case (Figure 27e,f)

Additional material

Additional file 1: Rhombic pinwheel crystallization in the EN model.
The movie shows OPMs (left) as well as their power spectrum (right). In
the left panel, colors encode preferred orientation and brightness
orientation selectivity. The simulation of the EN model was obtained by
gradient descent dynamics with circular stimulus ensemble and fixed
retinotopy. The simulation was started from the unselective fixed point z
(x, t = 0) = 0 (parameters: r = 0.1, 6/A = 0.1 (n = 0.67)).

Additional file 2: Pinwheel annihilation in the EN model. The movie
shows OPMs (left) as well as their power spectrum (right). In the left
panel, colors encode preferred orientation and brightness orientation
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selectivity. The simulation of the EN model was obtained by gradient
descent dynamics with circular stimulus ensemble and fixed retinotopy.
The simulation was started from the unselective fixed point z(x, t = 0) =
0 (parameters: r = 0.1, o/A = 0.3 (n = 0.0298)).

Additional file 3: Convergence to fractured stripes in the EN model.
The movie shows OPMs (left) as well as their power spectrum (right). In
the left panel, colors encode preferred orientation and brightness
orientation selectivity. The simulation of the EN model was obtained by
gradient descent dynamics with fixed retinotopy. The simulation was
started from the unselective fixed point z(x, t = 0) = 0 (parameters: r =
0.1, 0/A =02 (n =02), 54 =6).

Additional file 4: Hexagonal pinwheel crystallization in the EN
model. The movie shows OPMs (left) as well as their power spectrum
(right). In the left panel, colors encode preferred orientation and
brightness orientation selectivity. The simulation of the EN model was
obtained by gradient descent dynamics with fixed retinotopy. The
simulation was started from the unselective fixed point z(x, t = 0) = 0
(parameters: r = 0.1, o/A = 0.3 (n = 0.028), s, = 8).
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