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From baconian to popperian neuroscience
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Abstract

The development of neuroscience over the past 50 years has some similarities with the development of physics in
the 17th century. Towards the beginning of that century, Bacon promoted the systematic gathering of
experimental data and the induction of scientific truth; towards the end, Newton expressed his principles of
gravitation and motion in a concise set of mathematical equations that made precise falsifiable predictions. This
paper expresses the opinion that as neuroscience comes of age, it needs to move away from amassing large
quantities of data about the brain, and adopt a popperian model in which theories are developed that can make
strong falsifiable predictions and guide future experimental work.

Introduction
It is possible to interpret the ways of science more
prosaically. One might say that progress can ‘...come
about in only two ways: by gathering new perceptual
experiences, and by better organizing those which
are available already’, but this description of scienti-
fic progress, although not actually wrong, seems to
miss the point. It is too reminiscent of Bacon’s
induction: too suggestive of his industrious gathering
of the ‘countless grapes, ripe and in season’, from
which he expects the wine of science to flow: of his
myth of a scientific method that starts from observa-
tion and experiment and then proceeds to theories...
The advance of science is not due to the fact that
more and more perceptual experiences accumulate
in the course of time... Bold ideas, unjustified antici-
pations, and speculative thought, are our only means
for interpreting nature: our only organon, our only
instrument, for grasping her. And we must hazard
them to win our prize. Those among us who are
unwilling to expose their ideas to the hazard of refu-
tation do not take part in the scientific game.

Popper [1], pp. 279-80
Bacon’s Novum Organum [2] set out a bold agenda for

science that started with the systematic gathering of
tables of experimental data. He proposed that an induc-
tive method could be applied to the gathered facts to
produce more abstract generalizations, and in this way
the edifice of scientific knowledge could be built up.
Although accurate data are essential to any scientific
enterprise, I argue in this opinion piece that the

gathering of facts about the brain needs to be comple-
mented by a greater focus on falsifiable theories, which
can be tested by experiments and set the agenda for
further research. Neuroscience needs to become more
popperian if it is to become more scientific.
Developments in neuroscience have led to an incred-

ible expansion of our knowledge about the brain, giving
us a broad understanding of the functional specialization
of brain areas, a good idea about macro and micro con-
nection patterns, and detailed information about the
structure and function of individual neurons. Although
this knowledge is essential for neuroscientific progress,
there is a tendency for it to be viewed as an end in
itself, rather than a prelude to scientific work based on
mathematical theories that make falsifiable predictions
about the brain.
One problem with an excessive focus on knowledge-

gathering is that facts about experimental measurements
are often confused with explanations. But the ‘lighting
up’ of the ‘language faculty’ in a functional magnetic
resonance imaging (fMRI) scan does not explain how
the brain produces language; it just tells us that this
part of the brain is more linked (on average) to language
production than other parts, which might also be essen-
tial. Correlations between brain activity and brain func-
tions need to be explained by a scientific theory.
Some people seem to think that base facts can be

transmuted into scientific gold by developing models
and matching them to brain measurements. Such a pro-
cedure can be a useful starting point for the develop-
ment of scientific theories, but a model that matches a
dataset for a finite period of time is no more of an
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explanation than the original dataset. There are a poten-
tially infinite number of models that can fit any particu-
lar set of data at a given level of approximation (pick
your favorite machine-learning algorithm), and so the
fact that a model simply matches data is not a useful
piece of scientific knowledge. A match between model
and data might also be thought to be a sign that the
model is describing what the brain is actually doing
(when it is generating the data), but according to Put-
man [3], it is senseless to claim that the brain is imple-
menting any particular model or function, because an
open physical system can be interpreted as implement-
ing an infinite number of functions. Models that merely
match datasets are of no use to science; they must be
tested by making large numbers of falsifiable predictions.
Many people believe that the brain can be under-

stood by developing simulations based on very detailed
multi-compartment models [4], point neurons [5], neu-
ronal groups [6] or oscillators [7]. The logical exten-
sion of this type of work would be to scan a brain into
a computer at high resolution, and connect a simula-
tion based on this data to the original body - poten-
tially producing a complete working simulation of the
brain. Although simulation of the brain is a valuable
approach that can make limited predictions about its
response to perturbation, it is not obvious that a
detailed copy of the brain (if it could be done) would
give us much idea about how it works. It is as if physi-
cists investigating planetary motion were to go into an
empty region of space and construct a test solar sys-
tem out of large quantities of matter. These planetary
engineers might eventually get a solar system working,
but they would not get any closer to the generalization
provided by Newton’s equations.
Finally, a neuroscience that limits itself to measure-

ments of the brain cannot be completed because there
is a potentially infinite amount of experimental knowl-
edge of this kind. The brain has innumerable facts at
different levels, many of which are only starting to be
considered by neuroscience, for example, electromag-
netic waves [8] or glia activity [9]. We could go on gath-
ering facts forever without ever understanding how the
brain works.
Thus far, the negative critique. I will now highlight

some areas where the baconian to popperian transition
is starting to occur, and brain theories capable of falsifi-
able prediction are beginning to emerge.

Global theories of brain function
A number of people have developed explanatory the-
ories of the brain based on simple universal principles.
A good example of this approach is Friston [10], who
uses the principle of free-energy minimization to explain
many aspects of the brain’s structure and function, and

suggests that this can unify different perspectives on
how the brain works. Other examples of global brain
theories are neural Darwinism [11] and the bayesian
brain hypothesis [12].
This type of theory offers a high-level explanation of

the brain that captures many aspects of its operation,
and does a neat job of abstracting away from the messi-
ness of neural measurements and circuits. However, this
approach has a tendency to focus on explanations of
structures and functions that we are already aware of in
the brain (for example, Fletcher and Frith’s study on
schizophrenia [13]), with few attempts to generate pre-
dictions that could be tested by new experiments. It is
also an open question about how far some of these glo-
bal theories can be pushed without taking evolutionary
hacks and the brain’s hard-wired structure into account,
and it is not known whether global theories based on
relatively simple principles will be capable of making
detailed predictions about representational and con-
scious states, without being complemented by some of
the work described in the next two sections.

Representation
The brain’s encoding of information has been the sub-
ject of extensive empirical investigation. Information-
holding or representational states are typically identified
by exposing the brain to a set of stimuli and identifying
internal states that co-vary with the presence of the sti-
muli. For example, Hubel and Wiesel [14] identified
neurons in the cat visual cortex, whose firing changed
when the animal was exposed to a bar of light moving
in a particular direction, and electrode implantation
work in humans has shown that neurons can encode
information about individual people [15]. There has also
been a substantial amount of related work on ‘brain
reading’, which uses statistical correlations between
properties of the stimulus and fMRI data to make pre-
dictions about different types of mental content [16].
The main limitation of this method for identifying repre-

sentations is that there are an extremely large number of
properties of a given stimulus to which the system could
be responding, which reach unmanageable proportions as
the complexity of the system increases. For example, if a
system produces a response to a blue circle, then this
could be representing the colour of the circle, the size of
the circle, the time at which the circle appears and so on,
and a laborious and possibly infinite series of tests have to
be performed to precisely identify the representational
content (Figure 1). Further problems lie in the fact that
the brain’s learning makes each person’s representations
different, and the whole process has to be repeated for
each new brain and for each brain architecture.
A better approach would be to move away from measur-

ing the parts of the brain that respond to different types of
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information, and instead develop a theoretical understand-
ing of the transformation process that occurs when data
enter the senses, and the further transformations that take
place within the brain. For example, instead of measuring
the response of neurons in the visual cortex to bars of
light, we could use knowledge about the anatomy of the
retina to develop systematic accounts of representation
that explain how information moves from the high-dimen-
sional space of the world into the second high-dimensional
space of spikes in the optic nerves, leading to mathemati-
cal or information-theoretic accounts that can be used to
identify representational states immediately downstream
of the senses. This would avoid the combinatorial pro-
blems associated with probing a system for representa-
tions, and enable us to make predictions about the
representational contents of the brain by reconstructing its
environment from knowledge about the active representa-
tional states and the senses, possibly using three-dimen-
sional graphics to visualize the representational contents.
Some of the more promising work in this area is already
moving from correlation measurements to a modeling
approach capable of predictions [17].

Consciousness
What’s the matter with consciousness, then, and
how should we proceed? Early on, I came to the
conclusion that a genuine understanding of con-
sciousness is possible only if empirical studies are
complemented by a theoretical analysis. Indeed, neu-
robiological facts constitute both challenging para-
doxes and precious clues to the enigma of
consciousness. This state of affairs is not unlike the
one faced by biologists when, knowing a great deal
about similarities and differences between species,

fossil remains, and breeding practices, they still
lacked a theory of how evolution might occur. What
was needed, then as now, were not just more facts,
but a theoretical framework that could make sense
of them.

Tononi [18], p. 217
Research on the neural correlates of consciousness

attempts to identify the minimal neuronal mechanisms
that are jointly sufficient for any one specific conscious
percept [19]. To date, this type of work has identified
parts of the brain and dynamic aspects of neural activity
that seem to be linked to conscious information-proces-
sing. These data about the neural correlates of con-
sciousness are important, but data-gathering cannot
continue indefinitely, nor can it continue blindly. We
need to develop mathematical and algorithmic theories
of consciousness that can make falsifiable predictions
about phenomenal states and set the agenda for future
research.
This type of work has already started, and a number of

mathematical and algorithmic theories have been devel-
oped that could potentially explain the difference
between conscious and unconscious information proces-
sing; for example, information integration [18], causal
density [20] and liveliness [21]. Preliminary experimental
work has also been carried out to test the predictions
made by these theories [22,23]. However, a great deal of
theoretical and experimental work still needs to be per-
formed in this area; some of the current approaches have
severe performance limitations, others require further
refinement, and many theories of consciousness lack for-
mal definitions and have never been tested. Eventually a
theory-driven mathematical approach might be able to

Figure 1 Standard technique for identifying representational mental states. (A) system is exposed to different shapes and its response
measured; (B, C) the circle response is characterized more precisely by exposing the system to circles with different colors and sizes; (D)
eventually it might be possible to identify the system’s responses to more complex stimuli.
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move beyond facts about correlations, and generate
detailed predictions about the brain’s phenomenology
that can be compared with first-person reports.

Some possible objections
Measurement limitations make it impossible to test theories
Perhaps our predictions cannot be tested until we can
measure all of the neurons’ states in real time? One pro-
blem with this objection is that it cannot be assumed that
neuron firing is the correct level of abstraction; spikes are
just one set of brain measurements that we can make.
Ion channels or local field potentials might turn out to be
the best starting point for explanatory theories. A second
problem with this objection is that it is possible (perhaps
probable) that a higher level of abstraction, such as oscil-
lators modeling neuron groups [7], will be the most pro-
ductive level at which an understanding of the brain can
be reached. Newton did not have access to the state of
every molecule in every planet, and yet his equations
could predict the planetary bodies’ future movements
with a high degree of accuracy. Finally, although the
available data constrain our ability to test theories, a
good theory should be capable of making predictions
that can be tested with our current technology.
Newton was wrong
Newton’s laws had major flaws, failed to account for the
precession of the perihelion of Mercury, and should not
be held up as a paradigmatic example of scientific truth.
While Newton’s equations failed to be the final answer,
they are a beautiful example of a theory that makes
strong falsifiable predictions which can be experimen-
tally tested.
The dynamic complexity of the brain makes accurate
prediction impossible
The brain is a complex dynamical system, but so are the
planets: both can be highly stable or highly sensitive to
their initial conditions. We have mathematical techni-
ques for analyzing and describing dynamic systems, and
so it might be possible to explain how the complex
behaviour of the brain arises from a simple set of inter-
acting principles. The extent to which the brain can be
mathematically described is an empirical question.
This work is already being carried out
This article has highlighted some of the theories about
the brain that are capable of making falsifiable predic-
tions, and large numbers of mathematical models of dif-
ferent aspects of neural circuits have been developed. I
welcome the valuable work that is being done on the
development of strong falsifiable theories, and encourage
more researchers to take this approach and test their
theories in the laboratory.
Bacon was great
Yes, Bacon was great: many aspects of his method are
true and useful, and he cleared out a lot of Aristotelian

rubbish. However, in my opinion, Popper provides a
much more accurate description of the ideal scientific
method.
Popper was wrong
Some would argue that Popper presents an outmoded
account of the philosophy of science, which should be
replaced by Kuhn [24] at least, or perhaps Feyerabend
[25] or Latour [26]. Some of these later ‘relativist’, ‘con-
structivist’, ‘post-modern’ accounts reject the possibility
of scientific progress altogether. Insofar as neuroscience
understands itself as engaged in an enterprise to scienti-
fically understand the brain, it needs a model of what
science is, and I would argue that Popper provides a
carefully thought out and convincing account of what
good scientific practice should be. Other philosophies of
science can be used to interpret neuroscience, but many
of them are considerably less useful as guiding principles
than Popper: how (or why) would one actively pursue a
neuroscience based on Feyerabend or Latour?

The way ahead
We are far too closely bound to the language of measure-
ment (spikes, local field potentials, haemodynamic
responses, and so on). New ways of describing brain
activity are required that are more easily expressed in a
mathematical form; we need something along the lines of
Newton’s mass (a more abstract way of understanding
the measured weight of a body). Much promising work
has been carried out in computational neuroscience
[27,28] that could be taken further, and greater use could
be made of category theory, which has already been used
to describe biological systems and the brain at different
levels of abstraction [29,30]. Information theory has been
applied to the science of consciousness, and a number of
mathematical methods can be used to quantify functional
and effective connectivity, such as mutual information,
Granger causality, and transfer entropy [31]. These more
abstract descriptions of the brain can be used to develop
mathematical and algorithmic theories that can predict
the brain’s behaviour and its representational and con-
scious states. These predictions can be compared with
experimental measurements and behavioral reports; bad
theories can be discarded, and good theories retained
(more detailed suggestions about the way ahead can be
found in my previous work [32]).

Conclusions
This opinion piece has not in any way intended to
diminish the large amount of extremely useful work that
is being carried out in neuroscience. However, I have
tried to highlight the fact that a significant proportion
of the science in ‘neuroscience’ has a more baconian
than popperian character, with brain measurement
being seen almost as an end in itself, rather than as a
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starting point for the development of falsifiable theories.
We need to change emphasis and priorities - move
beyond measurements of the brain to mathematical
models that make many strong predictions which can
be experimentally tested. These models should not be
fitted to a particular dataset, but based on general laws
that could in principle be applied to intelligent creatures
with different neuroanatomy, such as birds or octopi,
and possibly to artificial systems as well. Although this
presents considerable challenges, I have touched on
some promising work that is already moving in this
direction.
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